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Black holes in massive (bi)gravity
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Stars in modified gravity



Black holes



Black holes are bald (?)

• Gravitational collapse...

• Black holes eat or expel surrounding matter

• Their stationary phase is characterised by a limited number of charges

• No details about collapse 

• Black holes are bald

Collapse

M,J,Q
<latexit sha1_base64="LrK4p2j76jYvYDlc1wfSghPuEVc="></latexit>

settling 
down



Black holes are bald (?)

No hair theorems/arguments dictate that adding degrees of 
freedom lead to trivial (General Relativity) or singular solutions.

E.g. in the standard scalar-tensor theories BH solutions are GR 
black holes with constant scalar.

✦ Circumvent no-hair black hole theorems ?

✦ “Hairs”, non-GR solutions : a way to test modified gravity

Can we find non-GR black hole solutions:



Horndeski theory

The most generic scalar-tensor theory in 4D, whose equations of motion 
contain no more than second derivatives 

[Horndeski’1974]

?

No more than 2 derivatives in EOMs to avoid the Ostrogradsky ghost
(an extra d.o.f., because one need to specify additional Cauchy data: 

ghost-like d.o.f )

S =

Z
d4xLH

⇥
g, @g, @2g,', @', @2', @3', ...

⇤
<latexit sha1_base64="bKwiYaguCnmsoZHORs+e2SZdquY="></latexit>

Generalized scalar-tensor theory



beyond Horndeski, DHOST

- No more than 2 derivatives in EOMs to avoid the Ostrogradski ghost
- When the equations of motion are of higher oder, in general it means 

a new degree of freedom which is a ghost
- Break assumption of the Ostrogradski theorem => a possibility to 

have higher order EOMs

+ beyond Horndeski + beyond^2 Horndeski (“DHOST”, “EST”)

[Zumalacárregui&García-Bellido’14
Gleyzes et al’15
Deffayet et al’15
Langlois and Noui’15
Crisostomi et al’16
Motohashi et al’16]



beyond Horndeski

Most general Horndeski shift-symmetric action:

Beyond Horndeski:

DHOST:

…

L2 = K (X, �)

L3 = G3 (X, �) ��

L4 = G4(X, �) R + G4,X(X, �)
�
(��)2 � (���)2

�
,

L5 = G5,X (X, �)
�
(��)3 � 3�� (���)2 + 2 (���)3

�
� 6G5 (X, �) Gµ��µ���

LbH
4 = F4(X, �)�µ�������

��µ��������

LbH
5 = F5(X, �)�µ���������µ�����������



No hair for galileon

Shift-symmetric Horndeski Lagrangian

Assume that:

(i) spacetime and scalar field is static spherically symmetric,
(ii) spacetime is asymptotically flat, and 
     and the norm of the current is finite (at the horizon) 
(iii) there is a canonical kinetic term in the action, analyticity of functions in the 
Lagrangian

A no-hair theorem then follows: 
the metric is Schwarzschild and the scalar field is constant

[Hui&Nicolis’12]



Avoiding no-hair theorem

EoM for the scalar:

S =

Z
d4x

p
�g


M2

P

2
R� 1

2
gµ⌫@µ�@⌫�+ ��Ĝ

�
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⇤� = ��Ĝ
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Ĝ = RµνσαR
µνσα − 4RµνR

µν +R2Gauss-Bonnet invariant:

Source for the scalar: it cannot be trivial in BH background

r
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�
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[Campbell et al’92,
Kanti et al’96
Sotiriou and Zhou’13]



Constructing hairs
[Babichev, Charmousis’13]

• Static spherically symmetric metric

• Time-dependent scalar

Black holes and stars in Horndeski theory 8

3. Horndeski black holes in shift symmetric theories

We will now turn to black hole spacetimes of theories with shift symmetry. Here we

should note that although we are mainly interested in spherical horizon geometries for

the 4-dimensional solutions, we shall consider for generality, a constant curvature 2 space

with line element

dK2 =
d�2

1� �2
+ �2d�2, (9)

where for  = 1 we have spherical symmetry, for  = 0 planar symmetry and for  = �1

hyperbolic symmetry. The additional cases with  = �1, 0 are included here for they

appear naturally as black hole horizons for negative (e↵ective or bulk) cosmological

constant and for Lifshitz type geometries. Although such geometries do not have an

immediate interest in cosmology, we include these cases here for completeness as the

parameter  appears simply as some normalized parameter in the equations of motion.

Additionally we take a locally static spacetime and thus we have

ds2 = �h(r)dt2 +
dr2

f(r)
+ r2dK2. (10)

The crucial point to note here is that since the scalar field appears only through its

derivatives in the Lagrangian, one a priori needs not impose staticity for the scalar.

In fact shift symmetric galileons naturally inherit some time dependence [32, 33] in

cosmological settings, which is translated to a space and time dependence in a spherically

symmetric setting (10). This is also true for self-tuning solutions [20] as we will see later

on in this section (see equation (13)). However, this dependence on time cannot be

arbitrary. Indeed, in order to have a well defined system of field equations, the 2 tensor

that is associated to the variation of the galileon terms with respect to the metric must

be static and spherically symmetric. In other words, the associated energy momentum

tensor of the galileon must obey the symmetries of spacetime, but not the galileon

itself!k
Treating the general case is possible but technically very tedious, so we will choose

to concentrate on specific sub-theories for which one can get analytic results. So let us

concentrate on a subset shift symmetric galileon theory notably,

L⇤CGJ = R� ⌘(@�)2 + �Gµ⌫@µ�@⌫�� 2⇤. (11)

This Lagrangian can be obtained by choosing G4 = 1 + �X and G2 = �2⇤ + 2⌘X.

Although the coupling ⌘ is canonically normalized to 1

2
, we keep it as ⌘ momentarily for

bookkeeping purposes. The field equations are

Eµ⌫ = Gµ⌫ � ⌘


@µ�@⌫�� 1

2
gµ⌫(@�)

2

�
+ gµ⌫⇤

+
�

2

⇥
(@�)2Gµ⌫ + 2Pµ↵⌫�r↵�r�� +gµ↵�

↵⇢�
⌫�� r

�r⇢�r�r��
⇤
= 0,

k The same guiding principle is used in GR with a complex scalar field in order to construct a hairy
”Kerr” type solution by Herdeiro and Radu [34].

ds2 = �h(r)dt2 +
dr2

f(r)
+ r2d⌦2

<latexit sha1_base64="uMxvnO5sVeiIqow7K9TL3s2Z2ww="></latexit><latexit sha1_base64="blB1ySraEcwTHBxzqkNhFpqXZSI="></latexit>
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The variation of the action with respect to � yields

rµJ
µ = 0, Jµ = (⌘gµ⌫ � �Gµ⌫) @⌫�.

Here, the key term in the action is the John term from Fab 4 which has nice integrability

properties, as we will see. Although our discussion will be associated to the specific

action (11), the essential results go through quite generically. Sometimes integrability

has to be sacrificed on the way in the sense that one has to use numerical methods to

obtain solutions.

The e↵ective energy momentum tensor associated to the galileon is precisely

Tµ⌫ = �Eµ⌫ + Gµ⌫ + gµ⌫⇤. As we noted above, this tensor must obey the symmetries

of (10) but not the scalar itself. Note for example that the Einstein plus cosmological

constant term do not contribute to the Ttr = 0 equation but other terms in Etr do. This
equation generically describes the inflow of matter in a black hole geometry and will

inevitably constrain drastically the galileon field if it is not static. The first key result

is the following:

Consider the shift symmetric theory (11) with spacetime symmetry given by (10).

Starting with � = �(t, r) the only compatible ansatz with the field equations is

� = qt+  (r). (12)

Indeed, taking � = �(t, r), the flow equation Etr = 0 yields the general solution for � as

a separable function of t and r [35]. This function, when inserted in the remaining field

equations, gives (12) as the only possible ansatz (see the general discussion in [36]).

The only solution to escape the rule of linear time dependence imposed in (12) is

to consider self-tuning solutions for flat spacetime. For theory (11), this holds in the

case of ⌘ = 0 and ⇤ 6= 0 . This is a simple example of a time dependent scalar field

immersed in a static spacetime. Indeed, the solution reads

� = �0 + �1(r
2 � t2) (13)

with �0,�1 integration constants while f = h = 1 with  = 1 for (10). The self-tuning

condition reads VJohn�2

1
= ⇤ for arbitrary bulk ⇤, and constant VJohn [20, 36]¶.

We expect the linear time ansatz (12) to be true for generic shift symmetric

theories (the discussion in [36] includes the Paul term; solution (13) is also valid for this

term, see [20]). It is surprising and highly non trivial that there exist time dependent

configurations for a static spacetime. Mathematically, we can understand that if time

dependence is linear in t, we get explicitly ODE’s rather than PDE’s once we input (12)

in the field equations. It is worthwhile however to make a remark on the non-trivial

physical significance of (10) and (12).

¶ Note that the same solution in a cosmological coordinate system is a purely time dependent function,
� = �0 + �1T 2, where T is FRW proper time. This solution illustrates what we mentioned earlier, a
time dependent galileon yields generically a time and space dependent galileon in a static ansatz.

The general solution is given by cubic algebraic equation.

Examples:

f = h = 1� M

r
, �0 = ±q

p
Mr

r �M
<latexit sha1_base64="LNZWXiQ6Uo9/yLMKiHVfxEDyloA=">AAACvHicbVHNbhMxEHaWvxKgTeHIxaKq4NBGu0FVcgmqxIVLpCKRtlJ2FXm9s4kVe3djz4YEax+DI1dehCs8AK/BE+BkK9GkjGxp9H3f2DPzxYUUBn3/d8O7d//Bw0d7j5tPnj7bP2gdPr80eak5DHkuc30dMwNSZDBEgRKuCw1MxRKu4tn7NX+1AG1Enn3CVQGRYpNMpIIzdNC41U37035wGqaacTuo9Ek4L1lCw2IqXtN+WCg6r7nQzDXaga4qq08H1bh15Lf9TdC7SXCTHJ13vvpf/ux/vxgfNlSY5LxUkCGXzJhR4BcYWaZRcAlVMywNFIzP2ARGLs2YAhPZzYQVPXZIQtNcu5sh3aC3KyxTxqxU7JSK4dTscmvwf9yoxLQXWZEVJULG64/SUlLM6XpdNBEaOMpV8/j2i8syEzxPXNfbsMQlarY1i52CXAA6LIHUmbRp3WpIOm6Rk7iyfrt7dkJ9d3Y0sSzhn8ivNe3e9qYQlvhZJOhM7HAV2QnkClCv1gYFu3bcTS477eBt++yjc6pH6tgjL8kr8oYEpEvOyQdyQYaEk2/kB/lJfnnvvMSbeaqWeo2bmhdkK7zFX5vO3bU=</latexit>

Stealth Schwarzschild solution

f = h = 1� M

r
� ⇤e↵

3
r2,  0 = ± q

h

p
1� h, ⇤e↵ = � 1

2�
<latexit sha1_base64="LJG0V+DsyW1CMWUGnKZyvHNWPKo="></latexit>

Asymptotically 
dS/AdS



Avoiding no-hair theorem

Black holes and stars in Horndeski theory 14

Shift-symmetric

Galileons

Gi(X)

Hair with Jr ”= 0

Sotiriou-Zhou

G5(X) Ã ln(X)

Hair with Jr
= 0

Rinaldi, Anabalon

et al., Minamitsuji,

Babichev et al., etc

Hair with Jr
= 0

Stealth Schwarz-

schild black hole

No hair

Hui-Nicolis theorem

GiX contains ne-

gative powers of X
GiX contains only

positive powers of X

No kinetic term Kinetic term

Asymptotic flatnessNo asymptotic flatness

Figure 1. Hair versus no-hair

(to be fixed relative to the black hole mass). Therefore J2 is actually singular at the

horizon because Jr = �f�0 � 4↵h0

h
f(f�1)

r2 6= 0. At this point one needs to invoke extra

input to conclude about the physical relevance of solutions with divergent norm of the

current J . For this solution of the theory (15), the Noether current cannot be a physical

observable, in particular, it cannot be coupled to matter directly. This question requires

further study.

3.3. Explicit solutions of hairy black holes

We shall now concentrate on explicit black hole solutions for the theory (11) setting

⌘ = 1

2
. Although the method works for any shift symmetric theory, the advantage here

is that (11) is particularly elegant in giving explicit solutions. In fact, we have the

general solution which we turn to now.

The general solution of theory (11) to the metric (10) and � = �(t, r) is given as a

solution to the following third order algebraic equation with respect to
p
k(r):

(q�)2
✓
+

r2

2�

◆2

�
✓
2+ (1� 2�⇤)

r2

2�

◆
k(r) + C0k

3/2(r) = 0, (16)

where C0, q are integration constants and  = 1,�1, 0 is the horizon curvature. Once a

Hair with Jr = 0
EB, Lehebel, 
Charmousis

Avoiding no-hair theorem

Plethora of solutions, including analytical ones



Rotating solutions

Looking for Kerr solution (but non-trivial scalar)

A class of Horndeski and beyond Horndeski theories allow for Kerr solution.

and F4, such that the extra factor in front of f is 1. The combination of this condition with
Eq. (5.1) gives

0 = G4X(X0) + 2X0F4(X0),

0 = G4XX(X0) + 4F4(X0) + 2X0F4X(X0), (5.3)

for some value X = X0.
We have thus found infinitely many theories that possess a stealth Schwarzschild black

hole solution. Namely, all those which fulfill the constraints given in Eq. (5.3) at some point
X0. A particularly interesting class among these is the subspace of {G4, F4} theories where
F4 = 0. In this subclass, the models that possess such a stealth black hole are the theories
with G4X(X0) = 0 and G4XX(X0) = 0. Any theory of the type

G4(X) = ⇣ +
X

n�2

�n(X �X0)
n (5.4)

will allow for a Schwarzschild metric with a non-trivial scalar field. A more general ex-
amination of theories having X = X0 with G4X(X0) = 0 and G4XX(X0) = 0 shows that
any such theory allows for all Ricci-flat solutions, with a non-vanishing hidden scalar field.
For instance, these theories admit as a solution the Kerr metric (here in Boyer-Lindquist
coordinates):

ds2 = �

✓
1�

2mr

r2 + a2 cos2 ✓

◆
dt2 �

4mra sin2 ✓

r2 + a2 cos2 ✓
dtd�+

r2 + a2 cos2 ✓

r2 � 2mr + a2
dr2

+ (r2 + a2 cos2 ✓)d✓2 +

✓
r2 + a2 +

2mra2 sin2 ✓

r2 + a2 cos2 ✓

◆
sin2 ✓d'2, (5.5)

with a scalar field given by

�(r, ✓) =
p

�2X0

h
a sin ✓ �

p
a2 � 2mr + r2 �m ln

⇣p
a2 � 2mr + r2 �m+ r

⌘i
, (5.6)

a being the rotation parameter and m the mass of the black hole. This scalar field is regular
everywhere outside of the event horizon of the Kerr black hole.

A remarkable characteristic of this class of solutions is that, even though the geometry
is asymptotically flat, the scalar does not vanish at spatial infinity: its derivative �0 tends
towards a finite constant. This violates another assumption of the no-hair theorem: it is
required that �0

! 0 at spatial infinity. Therefore, the class of solutions we are dealing with
breaks two hypotheses.

The black hole solutions found in this section are reminiscent of the properties of the
ghost condensate in the field of a black hole [40]. Indeed, for this theory, which contains
only a non-trivial function G2(X) (while other functions are zero) with a minimum at some
X = X0, the situation is very similar. At the point X = X0 the energy momentum tensor for
this theory becomes equivalent to that of the cosmological term. Adjusting G2(X) in such a
way that the cosmological term is zero, one gets a stealth black hole solution, similar to our
solutions in this section. In the case of the G2(X) theory, there is a pathology though — the
theory becomes non-dynamical at the point X = X0. A way to overcome this pathology is to
introduce higher-order terms. Therefore it is still to be understood, whether a theory (5.3)
is healthy at the point X = X0. We leave this study for future work.

– 13 –

[EB,Charmousis, Lehebel’17]

Kerr solutions in DHOST [Charmousis et al’19]

Non-Kerr solution (numerics) in cubic Galileon [Van Aelst et al’19]



Massive gravity

Linearized Einstein-
Hilbert term

mass term

SPF = M2
P

Z
d4x


�1

2
hµ⌫E↵�

µ⌫ h↵� �
1

4
m2

�
hµ⌫h

µ⌫ � h2
��

[Fierz&Pauli’39]

Non-linear completion
[de Rham, Gabadadze, Tolley‘10’11, 

Hassan & Rosen’12]

avoiding Ostrogradsky 
ghost is difficult

S = M2
P

Z
d3x

p
�g

✓
R[g]

2
+m2U [g, f ]

◆
+

M2
P

2

Z
d3x

p
�f (R[f ])

<latexit sha1_base64="vdxQ/eNh00fK2hAY7UEiNL0IUhs="></latexit>

Two metrics: 
- physical metric 
- extra metric (maybe non dynamical)



Two types of solutions

• Bi-diagonal: When two metrics can be put in the 
diagonal form simultaneously.

• Non Bi-diagonal: When this is not the case

A “no-go theorem” for bi-diagonal black holes
[Deffayet, Jacobson’11]



Bi-diagonal

Non Bi-diagonal

✦ Spherically symmetric BHs

- Bi-diagonal solutions: the two 
metrics are GR-like and equal 
or proportional (horizons 
coincide). 

- hairy BHs (numerics), non-
GR

- Charged GR BHs

✦ Rotating solutions

Two GR-like equal metrics

✦ Spherically symmetric BHs
Non bi-diagonal solutions: the two 
metrics are GR-like and not 
proportional (horizons may not 
coinside).

✦ Rotating solutions
Two GR-like non-equal metrics

[Salam & Strathdee’77]
[Isham & Storey’78]

[…]

[EB& Fabbri’13]

[EB& Fabbri’13]

[EB& Fabbri’13]

[Volkov’12,
Brito,Cardoso,Pani’13]



BH perturbations in modified 
gravity

✦ Some solutions or/and parameters of the theory may be ruled out 
(instabilities!)

✦ Physical consequences?

�gµ⌫
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�gµ⌫
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�gµ⌫

�fµ⌫
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GR scalar-tensor bi-gravity

Even for GR-like BHs in modified gravity perturbations are different 
from those of GR black holes.



BH perturbations in massive bi-
gravity

Instability of bi-Schwarzschild BHs in massive (bi)gravity [EB & Fabbri’13
Brito, Cardoso, Pani’13]

✦ Tachyonic instability

✦ Physically interesting

Very slow instability !

The Gregory-Laflamme instability 11
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Figure 1.3 A plot of the eigenvalues (m,Ω), scaled by r+, for which an
instability is present.

m to check if a solution exists. Fig. 1.3 shows a plot of the frequency pairs
(m,Ω) for which a regular solution, and hence an instability, exists, and Fig.
1.4 shows the behaviour of the perturbation.
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Figure 1.4 A plot of the metric perturbation.

Having found an unstable solution to the perturbation equations, the final
step of the argument is to demonstrate that this is a physical instability of
the black string, and not just some odd gauge mode. In fact, this is easy
to demonstrate by looking at (1.18). Since both the perturbation and the
Riemann tensor vanish in the extra dimension (hza = 0 = Rzabc), the five
dimensional Lichnerowicz operator reduces to the four dimensional Lich-



BH perturbations in massive bi-
gravity

Almost GR perturbation for non-bi-diagonal solutions [EB & Fabbri’14
EB,Brito,Pani’15]

• Quasinormal spectrum of these solutions coincides with that of a 
Schwarzschild black hole in general relativity 

• The full set of perturbation equations is generically richer than that of a 
Schwarzschild black hole in general relativity, and this affects the linear 
response of the black hole to external perturbations 

• There appear modes, which do not feel any gravitational potential and 
therefore do not backscatter. 



Stars



Screening mechanism

We want to recover General Relativity at short 
distances

When modifying gravity, extra degrees of 
freedom appear, which alter gravitational 
interaction between bodies

How to comply with both requirements ?



Consistent local physics? 

Mechanisms to recover General Relativity:

➡ Chameleon (non-linear potential for a canonical extra 
propagating scalar) - scalar-tensor theories, f(R)

➡ Symmetron (coupling to matter depends of the environment)

➡ Vainshtein mechanism (nonlinear kinetic term effectively hides 
extra degree(s) of freedom) - k-essence, DGP, Galileon, 
Horndeski theory, massive gravity



Screening

Breaking of the Vainshtein 
mechanism inside matter 

Horndeski theory

Vainshtein mechanism (weak gravity)
=>

Recover of General Relativity
=>

theory passes observational tests

beyond 
Horndeski theory

Neutron stars are 
different compared 

to those in GR
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For Horndeski theory GR is restored also inside matter
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For beyond Horndeski theory:

Newtonian order (Linearised gravity)

equations of motion to suppress the scalar field gradient sourced by massive objects. Indeed,
expanding the metric sourced by an object of mass M to Newtonian order as

ds2 = (�1 + 2�) dt2 + (1 + 2 ) �ij dx
i dxj , (1.1)

one finds a correction to the Newtonian potential
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where the dimensionless constant ↵ parameterises the coupling of the scalar to matter and
n > 0 is model dependent. A solar mass object has rv ⇠ O(0.1 kpc) [20] and so the cor-
rection to GR is strongly suppressed in the solar system. In the case of Horndeski theories,
Vainshtein screening is fully e↵ective [21–23]. For beyond Horndeski theories, this mechanism
works outside extended bodies but breaks down inside matter [24]. The equations governing
Newtonian perturbations were found to be of the form [24–27]
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where M(r) ⌘ 4⇡
R
r

0
s
2
⇢(s)ds, and the parameters ⌥1 and ⌥2 are non vanishing when the

theory contains beyond Horndeski terms in its Lagrangian.
This opens up the possibility of testing beyond Horndeski theories using astrophysical

objects such as stars [25, 26, 28–30] and galaxy clusters [27]. Currently, ⌥1 is bounded in
the range �0.22 < ⌥1 < 0.027 where the lower bound comes from the Chandrasekhar mass
of white dwarf stars [30] and the upper bound comes from consistency of the minimum mass
for hydrogen burning with the lowest mass hydrogen burning star [28, 29]. For later purposes
we note that prior to the white dwarf constraint, Ref. [26] was able to place the lower limit
⌥1 > �2/3 by requiring a sensible stellar profile (with a mass density that decreases with the
radius). The best constraint on ⌥2 = �0.22+1.22

�1.19
comes from the agreement of the lensing

and hydrostatic mass of galaxy clusters [27].
Constraining these parameters is important because they are directly related to the

coe�cients introduced in the context of the e↵ective description of dark energy that includes
Horndeski and beyond Horndeski theories [31–33], via [26, 27]:
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The coe�cients ↵T ⌘ c
2

T
� 1, ↵B and ↵H are defined at the level of the cosmological back-

ground solution and characterise the behaviour of cosmological perturbations [33]. In partic-
ular, when the theory is purely Horndeski ↵H = 0 and we thus have ⌥1 = ⌥2 = 0. Therefore,
constraints on ⌥i directly restrict the allowed “beyond Horndeski” deviations from GR.

The constraints mentioned above all rely on non-relativistic systems. The purpose of
this paper is to investigate the existence and structure of relativistic stars in these theories.
There are several motivations for such a study. First, the equations of motion for beyond
Horndeski theories are very non-linear and it is important to verify that static spherically
symmetric solutions for relativistic stars exist. Second, there are technical issues relating to
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   and         are only non-zero for beyond Horndeski theory⌥1 ⌥2

(Breaking of GR)
[Kobayashi et al’15]



Constraints on beyond Horndeski 
parameters
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                  for a sensible stellar profile
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⌥1 > �2/3
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Chandrasekhar mass of 
dwarf stars

Consistency of the minimum mass 
for hydrogen burning

[Jain, Kouvaris, Nielsen’15] [Sakstein’15]
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Sound speed of matter changes, 
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Helioseismology 

0 < ⌥1 < 10�2
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[EB,Lehebel’18]

�10�3 < ⌥1 < 10�3
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[Saltas,Lopes’19]
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FIG. 1. The maximum mass for each equation of state for
values of ⌥ indicated in the figure.

2. Ī–C Relations

As mentioned in the introduction, [18] have found an
approximately universal relation between the dimension-
less moment of inertia Ī = Ic

2
/GNM

3 and the compact-
ness C = GNM/R of the form

Ī = a1C
�1 + a2C

�2 + a3C
�3 + a4C

�4; (16)

In what follows, we will fit our modified gravity models
to a relation of this form. In the upper left panel of
figure 3 we plot the Ī–C relation for individual stellar
models for GR and show the best-fitting relation found
by [18] and our own, whose coe�cients are given in table
I. One can see that our relation agrees well with that
of [18]8. In the upper right panel we show the residuals
�Ī/Ī = (Īfit � Ī)/Ī; one can see that these are less than
10% and that there is no clear correlation with C. We
plot the equivalent figures for ⌥ = �0.03 and ⌥ = �0.05
in the middle and lower panels of figure 3 and give the
coe�cients for the fitting functions in table I. Evidently,
a similar (approximately) universal relation holds in both
cases.

The coe�cients in the table by themselves are not par-
ticularly illuminating and a cursory glance does not re-
veal whether the di↵erences between the relations for the

not clear that this remains the case in beyond Horndeski theo-
ries since the mTOV equations contain new terms that depend
on the derivative of the density. Such terms are absent in GR.
Finding the maximally compact EOS would require a detailed
numerical study similar to [64, 65].

8 We have not shown their best-fitting coe�cients for clarity rea-
sons but if one compares the two one finds small di↵erences. This
is to be expected since we use di↵erent equations of state and a
di↵erent code to calculate the stellar models. What is important
is that the two curves match very closely in the region [0.05, 0.40]

FIG. 2. The maximum mass and radius for each equation
of state. The values of ⌥ are the same as in figure 1. The
light gray shaded region shows the condition for causality in
GR i.e. the condition for the sound speed to be  1 and
assumes that the heaviest observed neutron star has a mass
of 2.01M�. The dark gray region corresponds to objects that
would be more compact than black holes i.e. R < 2GNM .

di↵erent theories are significant or not. This is partly be-
cause the fitting function typically used is phenomenolog-
ical and it is not clear how much degeneracy there is be-
tween the free parameters. For this reason, we have plot-
ted two figures better suited to show that the di↵erences
between the GR and beyond Horndeski theories is signif-
icant. In figure 4 we plot all three relations on the same
axes. Evidently, there is a marked di↵erence between the
three. To quantify this, in figure 5 we plot the quantity
�(⌥, C) ⌘ (Ī⌥(C) � ĪGR(C))/ĪGR(C), where ĪGR is our
best-fitting Ī–C relation for GR and Ī⌥ is the equivalent
relation for a beyond Horndeski theory with parameter
⌥. We also plot the quantity �GR ⌘ (ĪGR � ĨGR)/ĨGR

where ĨGR is the best-fit relation found by [18]. We
also plot the scatter in the best-fitting relation for all
three theories. The di↵erence between the GR relations
is commensurate with the scatter in the best-fitting rela-
tions whereas the di↵erence between the GR and beyond
Horndeski relations is far greater than this ( >⇠ 15%).
Therefore a precise measurement of this relation has the
power to discriminate between di↵erent theories. We
note that many alternative theories of gravity, such as
massless scalars coupled to matter and Einstein-Dilaton-
Gauss-Bonnet, predict similar relations to GR [59, 66]
and can therefore cannot be probed using the Ī–C rela-
tion.

B. Hyperon and Quark Stars

Stars containing particles such as hyperons, kaons, or
quarks in a colour-deconfined phase have been posited to
exist, and their study is an active and ongoing area of re-
search, and several of the equations of state we have used

32 equations 
of state 

[EB, Koyama, 
Langlois,Saito, 
Sakstein’16]
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FIG. 3. Left panels: The Ī–C relations for GR (upper), ⌥ = �0.03 (middle), and ⌥ = �0.05 (lower). The Black solid line
is the best fit of [18] (upper panel only) and the black dashed line is our best fit. Right panels: �Ī/Ī as a function of the
compactness for GR (upper), ⌥ = �0.03 (middle), and ⌥ = �0.05 (lower). Each individual stellar model is represented by a
purple dot in all cases.

contain such particles. In this section we briefly discuss
hyperonic and quark stars in beyond Horndeski theories,
focusing on the hyperon puzzle and the transition from
hyperon to quark stars. The former phenomenon can
be solved by beyond Horndeski theories, whilst the lat-
ter remains a feature of theory, just as in GR. We note
that our equations of state containing quarks are of the
strange quark matter (SQM) form and are based on the

MIT bag model [67]; they do not contain nucleons. Thus,
when we refer to quark stars we refer to objects composed
solely of SQM rather than neutron stars with quark cores.
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FIG. 3. Left panels: The Ī–C relations for GR (upper), ⌥ = �0.03 (middle), and ⌥ = �0.05 (lower). The Black solid line
is the best fit of [18] (upper panel only) and the black dashed line is our best fit. Right panels: �Ī/Ī as a function of the
compactness for GR (upper), ⌥ = �0.03 (middle), and ⌥ = �0.05 (lower). Each individual stellar model is represented by a
purple dot in all cases.

contain such particles. In this section we briefly discuss
hyperonic and quark stars in beyond Horndeski theories,
focusing on the hyperon puzzle and the transition from
hyperon to quark stars. The former phenomenon can
be solved by beyond Horndeski theories, whilst the lat-
ter remains a feature of theory, just as in GR. We note
that our equations of state containing quarks are of the
strange quark matter (SQM) form and are based on the

MIT bag model [67]; they do not contain nucleons. Thus,
when we refer to quark stars we refer to objects composed
solely of SQM rather than neutron stars with quark cores.

Universal relation also holds in beyond Horndeski theory

[Sakstein, et al’17]
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In modified gravity theories properties of compact change.
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We can look for observational effects of modified gravity
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Constraints on modification of gravity
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Benchmarks for testing GR


