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Nohvation

» Testable gravity modifications: neutron stars and black holes
% Tests of modified gravity

® Benchmarks for testing General Relativity



Outline

# Black holes in scalar-tensor theories
% Black holes in massive (bi)gravity

% Stars in modified gravity



Black holes



Bllack holes are bald (?)

e Gravitational collapse...

e Black holes eat or expel surrounding matter

¢ Their stationary phase is characterised by a limited number of charges
e No details about collapse

e Black holes are bald
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Bllack holes are bald (?)

No hair theorems/arguments dictate that adding degrees of
freedom lead to trivial (General Relativity) or singular solutions.

E.qg. in the standard scalar-tensor theories BH solutions are GR
black holes with constant scalatr.

Can we find non-GR black hole solutions:

4 Circumvent no-hair black hole theorems ?

4+ “Hairs”, non-GR solutions : a way to test modified gravity



Horndeski theory

Generalized scalar-tensor theory

~ R
The most generic scalar-tensor theory in 4D, whose equations of motion
contain no more than second derivatives

S = /d4:rz£H 19,09,0%g,p,00,0°0,8p, ...]

\ A

Elg,dg,0°g, @, dp, 0*p] = 0

[Horndeski’1974]

No more than 2 derivatives in EOMs to avoid the Ostrogradsky ghost
(an extra d.o.f., because one need to specify additional Cauchy data:
ghost-like d.o.f)



beyond Horndeski, DHOST

- No more than 2 derivatives in EOMs to avoid the Ostrogradski ghost

- When the equations of motion are of higher oder, in general it means
a new degree of freedom which is a ghost

- Break assumption of the Ostrogradski theorem => a possibility to
have higher order EOMs

+ beyond Horndeski + beyond”2 Horndeski (‘DHOST”,“EST")

[Zumalacarregui&Garcia-Bellido'14
Gleyzes et al’l5

Deffayet et al’l5

Langlois and Noui’1l5

Crisostomi et al’lé

Motohashi et al’1l6]



beyond Horndeski

Most general Horndeski shift-symmetric action:

£2 — K(X7 90)
L3 =G3(X,9)0p

Ly=G4X,0) R+ Gy x (X, ) [(Dw)2 — (VW))Z} ,
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Bevond Horndeski:
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DHOST:




No hair for galileon

Shift-symmetric Horndeski Lagrangian

Assume that:

(i) spacetime and scalar field is static spherically symmetric,
(i) spacetime is asymptotically flat, and
and the norm of the current is finite (at the horizon)

(i) there is a canonical kinetic term in the action, analyticity of functions in the
Lagrangian

A no-hair theorem then follows:
the metric is Schwarzschild and the scalar field is constant



Avoiding no-hsir theorem

S — /d%ﬁ[ PR—%g’“’(‘? 40, ¢+A¢G]

A

Gauss-Bonnet invariant: G = RuoaR"7* — AR, R" + R’

A

EoM for the scalar: O¢p = —\G

Source for the scalar: it cannot be trivial in BH background

[Campbell et al’92,
Kanti et al’96
Sotiriou and Zhou’13]




Constructing hairs

[Babichev, Charmousis’13]

LACT = R —n(0¢)? + BG*0,00,¢ — 2A.

dr?
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e Static spherically symmetric metric ds® = —h(r)dt* +

e Time-dependent scalar ¢ = qt +(r)

The general solution is given by cubic algebraic equation.

Examples:
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Avoiding no-hair theorem

Shift-symmetric
Galileons

Gi(X)

-
(G;x contains only (;x contains ne-
positive powers of X gative powers of X

[ Hair with J” # 0 |
A Sotiriou-Zhou
No asymptotic flatness Asymptotic flatness Gs(X) o In(X)
( Hair withJ" = 0 | 1
Rinaldi, Anabalon No kinetic term Kinetic term

et al., Minamitsuji,

§ Babichev et al., etc |

4

[ Hair with J" =0 | (
Stealth Schwarz- L
schild black hole

4
No hair W
Hui-Nicolis theorem J

Plethora of solutions, including analytical ones



Rotating solutions

Looking for Kerr solution (but non-trivial scalar)

A class of Horndeski and beyond Horndeski theories allow for Kerr solution.

[EB,Charmousis, Lehebel’17]

¢(r,0) = v/ —2Xo [asiné’— \/CL2 —2mr +7r2 —mln (\/@2 — 2mr + r? —m—i—r)}

Kerr solutions in DHOST [Charmousis et al’19]

Non-Kerr solution (numerics) in cubic Galileon [Van Relst et al’19]



Nassive gravity

1 1

SPF — Mj% / CZ4CC [_§huygﬁéyﬁha5 — ZmQ (h,uyh'w/ _ hz) [Fierz&Pauli’39]

. . . . mass term
Linearized Einstein-

Hilbert term

avoiding Ostrogradsky Non-linear completion

ghOSt IS dlfflCUlt [de Rham, Gabadadze, Tolley‘’10'11,

Hassan & Rosen’12]

Two metrics:
- physical metric
- extra metric (maybe non dynamical)

S:M%/d3x¢Tg<R£g] | m22/1[g,f]) | Kﬂf’ /dBwJTf(R[f])



T wo types of solutions

e Bi-diagonal: When two metrics can be put in the
diagonal form simultaneously.

e Non Bi-diagonal: When this is not the case

A “no-go theorem” for bi-diagonal black holes
[Deffayet, Jacobson’1l1l]



Bi-diagonal

4+ Spherically symmetric BHs

- Bi-diagonal solutions: the two
metrics are GR-like and equal
or proportional (horizons
coincide). r..]

- hairy BHs (numerics), non-
(aF% [Volkov'1l2,
Brito,Cardoso,Pani’1l3]

- Charged GR BHs (EBs Fabbri’13]

4+ Rotating solutions

Two GR-like equal metrics
[EB& Fabbri’13]

Non Bi-diagonal

4+ Spherically symmetric BHs

Non bi-diagonal solutions: the two
metrics are GR-like and not
proportional (horizons may not

COlﬂSlde). [Salam & Strathdee’77]
[Isham & Storey’78]

4+ Rotating solutions

Two GR-like non-equal metrics

[EB& Fabbri’1l3]




BiH perturbstions imn modified
gravity

GR scalar-tensor bi-gravity
OGyuw 9 R
0 0 J v

Even for GR-like BHs in modified gravity perturbations are different
from those of GR black holes.

4+ Some solutions or/and parameters of the theory may be ruled out
(instabilities!)

4+ Physical consequences?



BH perturbations in massive DI-
gravity

Instability of bi-Schwarzschild BHs in massive (bi)gravity [EB & Fabbri’13
Brito, Cardoso, Pani’13]
, _ O(1)
O0<m <
rs

for m’ ~ H—)[T ~ H_a

Very slow instability !

4+ Tachyonic instability
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rom 4+ Physically interesting




BiH perturbations in massive DI-
gravity

Almost GR perturbation for non-bi-diagonal solutions [EB & Fabbri’14
EB,Brito,Pani’1l5]

e Quasinormal spectrum of these solutions coincides with that of a
Schwarzschild black hole in general relativity

e The full set of perturbation equations is generically richer than that of a
Schwarzschild black hole in general relativity, and this affects the linear
response of the black hole to external perturbations

e There appear modes, which do not feel any gravitational potential and
therefore do not backscatter.



Stars



Screening mechanism

We want to recover General Relativity at short
distances

When modifying gravity, extra degrees of
freedom appear, which alter gravitational
Interaction between bodies

How to comply with both requirements ?



Consistent local physics™?

Mechanisms to recover General Relativity:

= Chameleon (non-linear potential for a canonical extra
propagating scalar) - scalar-tensor theories, f(R)

= Symmetron (coupling to matter depends of the environment)

= Vainshtein mechanism (nonlinear kinetic term effectively hides
extra degree(s) of freedom) - k-essence, DGP, Galileon,
Horndeski theory, massive gravity




Screening

Breaking of the Vainshtein
mechanism inside matter

Vainshtein mechanism (weak gravity)
=
Recover of General Relativity
=5
theory passes observational tests




Nevvitonian order (LLinearised gravity)

ds® = (—1+2®) dt* + (1 + 2¥) §;; do’ da?

% For Horndeski theory GR is restored also inside matter

% For beyond Horndeski theory:

d®
dr
dv
dr

(Breaking of GR)

[Kobayashi et al’15]

M(r) = 4x [, s*p(s)ds

» T{and T, are only non-zero for beyond Horndeski theory



Consitraints on beyond Horndeski
paramefters

» Y1 >—-2/3 fora sensible stellar profile

% —0.22 < Tl < 0.027

SRSl O

Chandrasekhar mass of Consistency of the minimum mass

dwarf stars for hydrogen burning
[Jain, Kouvaris, Nielsen’15] [Sakstein’15]
% Sound speed of matter changes, 0 < Y; < 1072 [EB,Lehebel’ 18]

% Helioseismology ~-107%° <Y <107° [Saltas,Lopes’19]



Neutron star ma)>amum mass and
radius

32 equations
of state

R
6 7 8 9 10 11 12 km

[EB, Koyama,
Langlois,Saito,
Sakstein’16]



Slovv rotating neutron stars

I — C relation

I
1 oR 1 T = —0.05
401 40} y
30t 30l
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Universal relation also holds in beyond Horndeski theory

[Sakstein, et al’17]



Conclusions

% In modified gravity theories properties of compact change.
% We can look for observational effects of modified gravity
% Constraints on modification of gravity

% Benchmarks for testing GR



