
Multimessengers @ Prague

Multimessengers, Compact Objects and Fundamental Physics

HIGH-ORDER POST-NEWTONIAN CALCULATIONS
FOR GRAVITATIONAL WAVES

Luc Blanchet

Gravitation et Cosmologie (GRεCO)
Institut d’Astrophysique de Paris
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Methods to compute GW templates

The gravitational chirp of binary black holes
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Methods to compute GW templates

Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1945]

1 Einstein quadrupole formula(
dE

dt

)GW

=
G

5c5

{
d3Iij
dt3

d3Iij
dt3

+O
(v
c

)2
}

2 Amplitude quadrupole formula

hTT
ij =

2G

c4R

{
d2Iij
dt2

(
t− R

c

)
+O

(v
c

)}TT

+O
(

1

R2

)
3 Radiation reaction formula [Chandrasekhar & Esposito 1970; Burke & Thorne 1970]

F reac
i = − 2G

5c5
ρ xj

d5Iij
dt5

+O
(v
c

)7

which is a 2.5PN ∼ (v/c)5 effect in the source’s equations of motion
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Methods to compute GW templates

Radiation reaction and balance equations

1 Conserved Newtonian energy in the source

E =

∫
d3x ρ

[
v2

2
+ Π− U

2

]
2 Eulerian equations of motion in the source

ρ
dvi

dt
= −∂iP + ρ∂iU −

F reac︷ ︸︸ ︷
2G

5c5
ρ xj

d5Iij
dt5

3 Energy loss is due to the work of the radiation reaction force

dE

dt
=

∫
d3xv · F reac = − G

5c5
d3Iij
dt3

d3Iij
dt3

+ total time derivative

4 Obtain the balance equation after averaging over one period

〈dE
dt
〉 = −〈FGW〉
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Methods to compute GW templates

Summary of known PN orders

Method Equations of motion Energy flux Waveform

Multipolar-post-Minkowskian & post-Newtonian 4PN 3.5PN + 4.5PN 3.5PN
(MPM-PN) 3.5PN (NNL) SO 4PN (NNL) SO 1.5PN (L) SO

3PN (NL) SS 3PN (NL) SS 2PN (L) SS
3.5PN (NL) SSS 3.5PN (NL) SSS

Canonical ADM Hamiltonian 4PN 1PN
3.5PN (NNL) SO

4PN (NNL) SS
3.5PN (NL) SSS

Effective Field Theory (EFT) 4PN 2PN
2.5PN (NL) SO
4PN (NNL) SS 3PN (NL) SS

Direct Integration of Relaxed Equations (DIRE) 2.5PN 2PN 2PN
1.5PN (L) SO 1.5PN (L) SO 1.5PN (L) SO

2PN (L) SS 2PN (L) SS 2PN (L) SS
Surface Integral 3PN

Many works devoted to spins:

Spin effects (SO, SS, SSS) are known in EOM up to 4PN order

SO effects are known in radiation field up to 4PN

SS in radiation field known to 3PN
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Gravitational wave generation formalism

GRAVITATIONAL WAVE GENERATION FORMALISM
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Gravitational wave generation formalism

Regions of space around the GW source

wave zone r > λ 

source
v << c

near zone
   r << λ 

exterior zone r > a
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Gravitational wave generation formalism

Linearized multipolar vacuum solution [Pirani 1964; Thorne 1980]

Solution of linearized vacuum field equations in harmonic coordinates

�hαβ(1) = ∂µh
αµ
(1) = 0

h00
(1) = − 4

c2

+∞∑
`=0

(−)`

`!
∂L

(
1

r
IL

)
L = i1i2 · · · i`

h0i
(1) =

4

c3

+∞∑
`=1

(−)`

`!

{
∂L−1

(
1

r
I

(1)
iL−1

)
+

`

`+ 1
εiab∂aL−1

(
1

r
JbL−1

)}

hij(1) = − 4

c4

+∞∑
`=2

(−)`

`!

{
∂L−2

(
1

r
I

(2)
ijL−2

)
+

2`

`+ 1
∂aL−2

(
1

r
εab(iJ

(1)
j)bL−2

)}

multipole moments IL(u) and JL(u) are arbitrary functions of u = t− r/c
mass M ≡ I = const, center-of-mass position Gi ≡ Ii = const

linear momentum Pi ≡ I(1)
i = 0, angular momentum Ji = const
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Gravitational wave generation formalism

Multipolar-post-Minkowskian expansion
[Blanchet & Damour 1986, 1988, 1992; Blanchet 1987, 1993, 1998]

1 Look for the general multipolar expansion M(h) generated outside
the source in the form [Bonnor 1959, Bonnor & Rotenberg 1961]

M(h) = Gh(1) +G2 h(1) + · · ·+Gn h(n) + · · ·︸ ︷︷ ︸
formal post-Minkowskian expansion

2 Start from the previous general multipolar solution hαβ(1) of the vacuum

field equation at the linear order

3 Iterate that solution using a regularization scheme based on A.C. in B ∈ C
to cope with the singularity of the multipole expansion when r → 0

Finite Part
B=0

�−1
ret

[
(r/r0)Bf

]
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Gravitational wave generation formalism

Multipolar-post-Minkowskian expansion
[Blanchet & Damour 1986, 1988, 1992; Blanchet 1987, 1993, 1998]

1 At n-th post-Minkowskian order we need to solve

∂νh
µν
(n) = 0

�hµν(n) = Λµν
(
h(1), · · ·h(n−1)︸ ︷︷ ︸

known from previous iterations

)
2 A particular solution with the required multipole structure reads

uµν(n) = FP
B=0

�−1
Ret

[
( rr0 )BΛµν(n)

]
3 An homogeneous solution is added to guarantee the harmonic gauge condition

hµν(n) = uµν(n) + vµν(n)

4 The MPM solution is represents the most general solution of Einstein’s
vacuum equations outside an isolated matter system
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Gravitational wave generation formalism

Asymptotic structure of radiating space-time
[Bondi-Sachs-Penrose formalism 1960s]

I 0
matter
source

J+

J -

B

ADM

(u)M

M

radiation
    loss

MB(u) = MADM−

mass-energy emitted in GW︷ ︸︸ ︷
G

5c7

∫ u

−∞
dt U

(1)
ij (t)U

(1)
ij (t) +

{
higher multipole moments
higher PN approximations
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Gravitational wave generation formalism

Problem of the matching
[Lagerström et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

1 Most general multipolar(-post-Minkowskian) solution in the source’s exterior

M(h) = FP
B=0

�−1
ret

[
( rr0 )BM(Λ)

]
+

+∞∑
`=0

∂L

{
IL(t− r/c)

r

}
where the homogeneous solution is parametrized by multipole moments

2 Most general PN solution in the source’s near zone

h̄ = FP
B=0

�−1
sym

[
( rr0 )B τ̄

]
+

+∞∑
`=0

∂L

{
RL(t− r/c)−RL(t+ r/c)

r

}
where the homogeneous solution (regular when r → 0) is parametrized by
“radiation reaction” multipole moments

3 We impose the matching equation

M(h) =M(h̄)
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Gravitational wave generation formalism

Problem of the matching
[Lagerström et al. 1967; Burke & Thorne 1971; Kates 1980; Anderson et al. 1982; Blanchet 1998]

m
m

1

2

actual solution

h

r

exterior zone

near zone

matching zone
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Gravitational wave generation formalism

General solution of the matching equation

1 In the far zone

M(h) = FP
B=0

�−1
ret

[
( rr0 )BM(Λ)

]
− 4G

c4

+∞∑
`=0

∂L

{
FL(t− r/c)

r

}
︸ ︷︷ ︸

source’s multipole moments

2 In the near zone [Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2005]

h̄ = FP
B=0

�−1
ret

[
( rr0 )B τ̄

]
− 4G

c4

+∞∑
`=0

∂L

{
RL(t− r/c)−RL(t+ r/c)

r

}
︸ ︷︷ ︸

non-local tail term (4PN order)
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Problem of the 4PN equations of motion

PROBLEM OF THE 4PN EQUATIONS OF MOTION
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Problem of the 4PN equations of motion

4PN equations of motion of compact binary systems

dv1

dt
=− Gm2

r2
12

n12

+

1PN Lorentz-Droste-Einstein-Infeld-Hoffmann term︷ ︸︸ ︷
1

c2

{[
5G2m1m2

r3
12

+
4G2m2

2

r3
12

+ · · ·
]
n12 + · · ·

}
+

1

c4
[· · · ]︸ ︷︷ ︸

2PN

+
1

c5
[· · · ]︸ ︷︷ ︸

2.5PN
radiation reaction

+
1

c6
[· · · ]︸ ︷︷ ︸

3PN

+
1

c7
[· · · ]︸ ︷︷ ︸

3.5PN
radiation reaction

+
1

c8
[· · · ]︸ ︷︷ ︸

4PN
conservative & radiation tail

+O
(

1

c9

)

3PN


[Jaranowski & Schäfer 1999; Damour, Jaranowski & Schäfer 2001ab]

[Blanchet-Faye-de Andrade 2000, 2001; Blanchet & Iyer 2002]

[Itoh & Futamase 2003; Itoh 2004]

[Foffa & Sturani 2011]

ADM Hamiltonian

Harmonic EOM

Surface integral method

Effective field theory

4PN

 [Jaranowski & Schäfer 2013; Damour, Jaranowski & Schäfer 2014]

[Bernard, Blanchet, Bohé, Faye, Marchand & Marsat 2015, 2016, 2017abc]

[Foffa & Sturani 2013, 2019; Foffa, Porto, Rothstein & Sturani 2019]

ADM Hamiltonian

Fokker Lagrangian

Effective field theory
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Problem of the 4PN equations of motion

The Fokker Lagrangian approach to the 4PN EOM

Based on collaborations with

Laura Bernard, Alejandro Bohé, Guillaume Faye,
Tanguy Marchand & Sylvain Marsat

[PRD 93, 084037 (2016); 95, 044026 (2017); 96, 104043 (2017); 97, 044023 (2018); 97, 044037 (2018)]
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Problem of the 4PN equations of motion

Fokker action of N point particles

Gauge-fixed Einstein-Hilbert action of N point particles

SEH =
c3

16πG

∫
d4x
√
−g
[
R −1

2
ΓµΓµ︸ ︷︷ ︸

gauge-fixing term

]
−
∑
a

mac
2

∫
dτa︸ ︷︷ ︸

N point particles

The Fokker PN action is obtained by inserting an explicit iterated PN solution
of the Einstein field equations

gµν(x, t) −→ gµν(x;xa(t),va(t), · · ·)

The PN equations of motion of the N particles (self-gravitating system) are

δSF

δxa
≡ ∂LF

∂xa
− d

dt

(
∂LF

∂va

)
+ · · · = 0

The Fokker action is equivalent to the effective action of the EFT
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Problem of the 4PN equations of motion

The gravitational wave tail effect
[Blanchet & Damour 1988; Blanchet 1993, 1997; Foffa & Sturani 2011; Galley, Leibovich, Porto & Ross 2016]

ijQ M klQ ijQ M

4PN

1.5PN

matter source

field point

In the near zone (4PN effect)

Stail =
G2M

5c8
Pf

∫∫
dtdt′

|t− t′|
Q

(3)
ij (t)Q

(3)
ij (t′)

In the far zone (1.5PN effect)

htail
ij =

4G

c4r

GM

c3

∫ t

−∞
dt′Q

(4)
ij (t′) ln

(
t− t′

τ0

)
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Problem of the 4PN equations of motion

Potential modes versus radiation modes

The potential modes are responsible for conservative near zone effect and can
be computed with the symmetric propagator (when neglecting radiation
reaction effects)

The radiation modes are conservative effects coming from gravitational waves
propagating at infinity and re-expanded in the near zone. The first radiation
effect in the Fokker action is the non local tail effect at 4PN order

To high PN order there is a complicated mix up between potential and
radiation modes encapsuled in the general formula

h̄ = FP
B=0

�−1
ret

[
( rr0 )B τ̄

]
︸ ︷︷ ︸

potential modes

−4G

c4

+∞∑
`=0

∂L

{
RL(t− r/c)−RL(t+ r/c)

r

}
︸ ︷︷ ︸

radiation modes
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Problem of the 4PN equations of motion

Dimensional regularization of the Fokker action

UV divergences due to the modelling of compact objects by point particles
plague the potential modes starting from the 3PN order

IR divergences in the Einstein-Hilbert part of the Fokker action (potential
modes) occur at the 4PN order

The IR pole in the potential modes should be compensated by an UV pole
coming from the non-local tail term at 4PN order (radiation mode)

UV and IR divergences are treated with dimensional regularization (d = 3 + ε)

Gret(x, t) = − k̃

4π

θ(t− r)
rd−1

γ 1−d
2

(
t

r

)
γs(z) =

2
√
π

Γ(s+ 1)Γ(−s− 1
2 )

(
z2 − 1

)s
(such that

∫ +∞

1

dz γs(z) = 1)

The regularization is followed with a renormalization by particle’s shifts
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Problem of the 4PN equations of motion

Potential mode contribution to IR divergences

The Hadamard regularization of IR divergences reads

IHR
R = FP

B=0

∫
r>R

d3x
( r
r0

)B
F (x)

The corresponding dimensional regularization reads

IDR
R =

∫
r>R

ddx

`d−3
0

F (d)(x)

The difference between the two regularization is of the type (ε = d− 3)

DI =
∑
q

[
1

(q − 1)ε︸ ︷︷ ︸
IR pole

− ln

(
r0

`0

)]∫
dΩ2+ε ϕ

(ε)
3,q(n) +O (ε)
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Problem of the 4PN equations of motion

UV divergences coming from the radiation mode

1 At 4PN order the radiation mode is due to the presence of the tail effect
described in 3 dimensions by

Htail = −4G

c4

+∞∑
`=0

∂L

{
RL(t− r/c)−RL(t+ r/c)

r

}
2 In d dimensions it reads

Htail =

+∞∑
`=0

+∞∑
k=0

1

c2k
∆−kx̂L f

(2k)
L (t)

fL(t) =
(−)`+1k̃

4π`!
FP
B=0

∫ +∞

1

dz γ 1−d
2

(z)

∫
ddx

( r
r0

)B
∂̂L

[
M(Λ)(y, t− zr/c)

rd−2

]
y=x

3 In intermediate calculations of radiation modes it is important to keep the
parameter B and apply first the limit B → 0 for any ε > 0
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Problem of the 4PN equations of motion

The B-ε regularization scheme

1 Specializing to the quadratic mass quadrupole interaction FL ∼M ×Qij the
multipolar source term will itself be of the type

M(Λ)L(r, t− zr/c) = r−2d+6−k
∫ +∞

1

dy yp γ 1−d
2

(y)FL(t− (y + z)r/c)

2 After a series of transformations we end up with

fL = FP
B=0

(−)`+k Cp,k` (ε,B)

2`+ 1 + ε

Γ(2ε−B)

Γ(`+ k − 1 + 2ε−B)

∫ +∞

0

dτ τB−2ε F
(`+k−1)
L (t−τ)

3 The numerical coefficient is defined by analytic continuation in B and ε

Cp,k` (ε,B) =

∫ +∞

1

dy yp γ−1− ε
2
(y)

∫ +∞

1

dz (y + z)`+k−2+2ε−Bγ−`−1− ε
2
(z)

4 The regulator B is needed to protect against the divergence of this integral
at infinity (when y, z → +∞, with y ∼ z)
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Problem of the 4PN equations of motion

Ambiguity-free completion of the 4PN EOM

1 From the metric we obtain the equations of motion and then identify the
corresponding gauge invariant term in the Fokker action

2 We find that the limit B → 0 is finite (no poles) and we obtain a simple
closed-form expression for the tail term in an arbitrary d dimension

Stail
F = Kd

G2M

c8

∫∫
dtdt′

|t− t′|2d−5
Q

(3)
ij (t)Q

(3)
ij (t′)

with Kd =
12− 12d+ 5d2 − 4d3 + d4

8(d− 1)2(d+ 2)

(
2`20
π

)d−3
Γ(−d2 )

Γ( 7
2 − d)Γ( 5

2 −
d
2 )

3 This should correspond exactly to the
(real-space version of the) Feynman diagram
computed in Fourier space by the EFT
community [Galley, Leibovich, Porto & Ross 2016]

ijQ M klQ
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Problem of the 4PN equations of motion

Ambiguity-free completion of the 4PN EOM

1 In the limit ε→ 0 this gives Hadamard’s “Partie finie” (Pf) integral

Stail
F =

G2M

5c8
Pf
τ0

∫∫
dtdt′

|t− t′|
Q

(3)
ij (t)Q

(3)
ij (t′)

with τ0 =
`0
c
√
π

exp
[ 1

2ε︸︷︷︸
UV type pole

−1

2
γE −

41

60

]

2 We find that the UV pole exactly cancels the IR pole coming from the
potential (Einstein-Hilbert) part of the Fokker action

3 Adding up all contributions we obtain the complete EOM at 4PN order with
self-consistent derivation of previously conjectured “ambiguity” parameters

4 Recently the EFT approach has also succeeded in a full self-consistent
ambiguity-free derivation of the 4PN EOM [Foffa & Sturani 2019; Foffa, Porto,

Rothstein & Sturani 2019]

5 The three methods (ADM Hamiltonian, Fokker Lagrangian, EFT) are in
perfect agreement on the final result
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Progress on the 4.5PN GW generation

PROGRESS ON THE 4.5PN GW GENERATION
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Progress on the 4.5PN GW generation

PN parameters in the orbital phase evolution

φ =

∫
ω dt x =

(
GMω

c3

)2/3

ν =
m1m2

(m1 +m2)2

φ(x) = φ0 −
x−5/2

32ν

∑
p

(
ϕpPN(ν) + ϕ

(l)
pPN(ν) lnx

)
xp
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Progress on the 4.5PN GW generation

3.5PN parameters

ϕ0PN = 1

ϕ1PN =
3715

1008
+

55

12
ν

ϕ1.5PN = −10π

ϕ2PN =
15293365

1016064
+

27145

1008
ν +

3085

144
ν2

ϕ
(l)
2.5PN =

(
38645

1344
− 65

16
ν

)
π

ϕ3PN =
12348611926451

18776862720
− 160

3
π2 − 1712

21
γE −

3424

21
ln 2

+

(
−15737765635

12192768
+

2255

48
π2

)
ν +

76055

6912
ν2 − 127825

5184
ν3

ϕ
(l)
3PN = −856

21

ϕ3.5PN =

(
77096675

2032128
+

378515

12096
ν − 74045

6048
ν2

)
π
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Progress on the 4.5PN GW generation

Toward 4.5PN parameters

1 The 4PN term is only known from perturbative BH theory in the limit ν → 0
[Tagoshi & Sasaki 1994; Tanaka, Tagoshi & Sasaki 1996]

ϕ4PN =
2550713843998885153

2214468081745920
− 45245

756
π2 − 9203

126
γE −

252755

2646
ln 2

− 78975

1568
ln 3 +O(ν)

ϕ
(l)
4PN = −9203

252
+O(ν)

2 The 4.5PN term is known and due to the 4.5PN tail-of-tail-of-tail integral for
circular orbits [Marchand, Blanchet & Faye 2017]

ϕ4.5PN =

(
−93098188434443

150214901760
+

80

3
π2 +

1712

21
γE +

3424

21
ln 2

+

[
1492917260735

1072963584
− 2255

48
π2

]
ν − 45293335

1016064
ν2 − 10323755

1596672
ν3

)
π

ϕ
(l)
4.5PN =

856

21
π
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Progress on the 4.5PN GW generation

Toward 4.5PN parameters

1 The 4PN term is only known from perturbative BH theory in the limit ν → 0
[Tagoshi & Sasaki 1994; Tanaka, Tagoshi & Sasaki 1996]

ϕ4PN =
2550713843998885153

2214468081745920
− 45245

756
π2 − 9203

126
γE −

252755

2646
ln 2

− 78975

1568
ln 3 +O(ν)

ϕ
(l)
4PN = −9203

252
+O(ν)

2 The 4.5PN term is known and due to the 4.5PN tail-of-tail-of-tail integral for
circular orbits [Marchand, Blanchet & Faye 2017]

ϕ4.5PN =

(
−93098188434443

150214901760
+

80

3
π2 +

1712

21
γE +

3424

21
ln 2

+

[
1492917260735

1072963584
− 2255

48
π2

]
ν − 45293335

1016064
ν2 − 10323755

1596672
ν3

)
π

ϕ
(l)
4.5PN =

856

21
π
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Progress on the 4.5PN GW generation

The 4.5PN radiative quadrupole moment

Uij(t) = I
(2)
ij (t) +

GM

c3

∫ +∞

0

dτI
(4)
ij (t− τ)

[
2 ln

(
τ

2τ0

)
+

11

6

]
︸ ︷︷ ︸

1.5PN tail integral

+
G

c5

{
−2

7

∫ +∞

0

dτI
(3)
a<iI

(3)
j>a(t− τ)︸ ︷︷ ︸

2.5PN memory integral

+ instantaneous terms

}

+
G2M2

c6

∫ +∞

0

dτI
(5)
ij (t− τ)

[
2 ln2

(
τ

2τ0

)
+

57

35
ln

(
τ

2τ0

)
+

124627

22050

]
︸ ︷︷ ︸

3PN tail-of-tail integral

+
G3M3

c9

∫ +∞

0

dτI
(6)
ij (t− τ)

[
4

3
ln3

(
τ

2τ0

)
+ · · ·+ 129268

33075
+

428

315
π2

]
︸ ︷︷ ︸

4.5PN tail-of-tail-of-tail integral

+O
(

1

c10

)
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Progress on the 4.5PN GW generation

The 4PN mass type quadrupole moment
[Marchand, Henry, Larrouturou, Marsat, Faye & Blanchet, 2019 in progress]

1 The `-th order mass type multipole moments of a general isolated source is

IL(t) = FP
B=0

∫
d3x

(
r

r0

)B∫ 1

−1

dz

{
δ` x̂L Σ− 4(2`+ 1)

c2(`+ 1)(2`+ 3)
δ`+1 x̂iL Σ

(1)
i

+
2(2`+ 1)

c4(`+ 1)(`+ 2)(2`+ 5)
δ`+2 x̂ijL Σ

(2)
ij

}
2 Need components of the metric with 4PN accuracy

h00 = −4V

c2
− 2

c4

(
Ŵ + 4V 2

)
− 8

c6

(2PN potential︷︸︸︷
X̂ + · · ·

)
− 64

c8

(3PN potential︷︸︸︷
T̂ + · · ·

)
h0i =

4Vi
c3

+
8

c5

(
R̂i + ViV

)
+

16

c7

(3PN potential︷︸︸︷
Ŷi + · · ·

)
hij = − 4

c4

(
Ŵij −

1

2
δijŴ

)
− 16

c4

(
Ẑij︸︷︷︸

3PN potential

−1

2
δijẐ

)
− 32

c8

(
M̂ij︸︷︷︸

4PN potential

+ · · ·
)
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Progress on the 4.5PN GW generation

The 4PN mass type quadrupole moment
[Marchand, Henry, Larrouturou, Marsat, Faye & Blanchet, 2019 in progress]

1 Method of super-potentials [Blanchet, Faye & Whiting 2014]∫
d3x rB x̂L

linear potential︷︸︸︷
φ P︸︷︷︸
difficult potential

=

∫
d3x rB

(
Ψφ
L ∆P + ∂i

[
∂iΨ

φ
LP −Ψφ

L∂iP
]

︸ ︷︷ ︸
yields a surface term

)

where Ψφ
L is obtained from the super-potentials φ2k of φ = φ0 as

Ψφ
L = ∆−1

(
x̂L φ

)
=
∑̀
k=0

(−2)k`!

(`− k)!
x〈L−K∂K〉

∆φ2k+2 = φ2k︷ ︸︸ ︷
φ2k+2

2 Method of surface integrals [Blanchet & Iyer 2005]

FP
B=0

∫
d3x rBx̂L ∆G = −(2`+ 1)

∫
dΩ n̂LX`(n)

where X` is the coefficient of r−`−1 in the expansion of G when r → +∞
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Progress on the 4.5PN GW generation

The 4PN mass type quadrupole moment
[Marchand, Henry, Larrouturou, Marsat, Faye & Blanchet, 2019 in progress]

1 All terms admit a closed form expression and have been computed explicitly
2 Dimensional regularization is used to treat UV divergences

The UV poles are renormalized by means of the same UV shifts as determined
in the 4PN equations of motion

3 IR divergences are treated for the moment using the Hadamard finite part
when B → 0 but will later be corrected by means of the B-ε regularization

The IR poles will be renormalized by means of the same IR shifts as found in
the 4PN equations of motion

4 The 4PN radiative quadrupole moment is obtained by adding a specific
coupling between the 1.5PN tail and the 2.5PN memory

5 The 4PN GW mode h22 follows directly from the radiative quadrupole

6 Adding the contributions of the 3PN mass octupole and 3PN current
quadrupole moments we compute the 4PN GW flux and phase evolution
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Radiation reaction and flux-balance equations

RADIATION REACTION AND FLUX-BALANCE EQUATIONS
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Radiation reaction and flux-balance equations

Radiation reaction to 4PN order

1 At 2.5PN order for general matter systems the radiation reaction force in a
specific gauge is purely scalar [Burke & Thorne 1970]

F reac
i = ρ ∂iV

reac

2 At the 3.5PN order the radiation reaction derives from scalar and vector
radiation reaction potentials

F reac
i = ρ

[
∂iV

reac − 4

c2
vj
(
∂iV

reac
j − ∂jV reac

i

)
− 4

c3
εijkv

j dV reac
k

dt

]
3 At 4PN order the radiation reaction contains a tail term (again scalar)
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Radiation reaction and flux-balance equations

Radiation reaction to 4PN order [Blanchet 1993, 1997]

V reac = −

2.5PN radiation reaction︷ ︸︸ ︷
G

5c5
xijI

(5)
ij +

3.5PN scalar correction︷ ︸︸ ︷
G

c7

[
1

189
xijk I

(7)
ijk −

1

70
r2xij I

(7)
ij

]
− 4G2M

5c8
xij
∫ +∞

0

dτ I
(7)
ij (t− τ)

[
ln

(
τ

2τ0

)
+

11

12

]
︸ ︷︷ ︸

4PN radiation reaction tail

+O
(

1

c9

)

V reac
i =

G

c5

[
1

21
x̂ijk I

(6)
jk −

4

45
εijk x

jl J
(5)
kl

]
︸ ︷︷ ︸

3.5PN vector correction

+O
(

1

c7

)

This result permits to prove the balance equations for general isolated systems up
to the 4PN order or 1.5PN relative order beyond the quadrupolar radiation
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Radiation reaction and flux-balance equations

Radiation reaction derivation revisited [Blanchet & Faye 2018]

1 Metric accurate to 1PN order for conservative effects and to
3.5PN order for dissipative radiation reaction effects

g00 = −1 +
2V
c2
− 2V2

c4
+Ocons

(
1

c6

)
g0i = −4Vi

c3
+Ocons

(
1

c5

)
gij = δij

(
1 +

2V
c2

)
+

4

c4

(
Wij − δijWkk

)
+Ocons

(
1

c6

)
2 Potentials are composed of a conservative part and a dissipative one

Vµ = V cons
µ + V reac

µ

3 Integrate the matter equations of motion ∇νTµν = 0 over the source

∂ν
(√
−gT νµ

)
=

1

2

√
−g ∂µgρσT ρσ
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Radiation reaction and flux-balance equations

Radiation reaction derivation revisited [Blanchet & Faye 2018]

Recover well known results for the fluxes of energy and angular momentum
[Epstein & Wagoner 1975; Thorne 1980; Blanchet & Damour 1989]

dE

dt
= −G

c5

(
1

5
I

(3)
ij I

(3)
ij +

1

c2

[
1

189
I

(4)
ijkI

(4)
ijk +

16

45
J

(3)
ij J

(3)
ij

])
+O

(
1

c8

)
dJi
dt

= −G
c5
εijk

(
2

5
I

(2)
jl I

(3)
kl +

1

c2

[
1

63
I

(3)
jlmI

(4)
klm +

32

45
J

(2)
jl J

(3)
kl

])
+O

(
1

c8

)
And also for the linear momentum which is a subdominant 3.5PN effect
[Papapetrou 1971; Bekenstein 1973]

dPi
dt

= −G
c7

[
2

63
I

(4)
ijkI

(3)
jk +

16

45
εijkI

(3)
jl J

(3)
kl

]
+O

(
1

c9

)
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Radiation reaction and flux-balance equations

What about the position of the center of mass?

1 For an isolated conservative system the conserved integrals are E, Ji, Pi and
also the initial position of the center of mass

Zi = Gi − Pit

where Gi is the position of the center of mass multiplied by the mass

2 The conservation of Zi is associated with the invariance under Lorentz boosts

3 We also find a balance equation for the center-of-mass position

dGi
dt

= Pi −
2G

21c7
I

(3)
ijkI

(3)
jk +O

(
1

c9

)
4 This formula has never appeared in standard texbooks on GR or gravitational

waves, nor on specialized reviews, it appeared only recently in the GW
litterature [Kozameh, Nieva & Quirega 2018; Blanchet & Faye 2018; Compère, Oliveri & Seraj 2019]
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Radiation reaction and flux-balance equations

Direct calculation of the GW fluxes at infinity

I 0
matter
source

J+

J -

u = const

t = const

1 Introduce a retarded null coordinate u satisfying

gµν∂µu∂νu = 0

2 For instance choose u = t− r∗/c with the tortoise coordinate

r∗ = r +
2GM

c2
ln

(
r

r0

)
+O

(
1

r

)
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Radiation reaction and flux-balance equations

Direct calculation of the GW fluxes at infinity

1 Perform a coordinate change (t,x)→ (u,x) in the conservation law of the
pseudo-tensor ∂ντ

µν = 0 to get

∂

c∂u

[
τµ0(x, u+ r∗/c)− ni∗τµi(x, u+ r∗/c)

]
+ ∂i

[
τµi(x, u+ r∗/c)

]
= 0

2 Integrating over a volume V tending to infinity with u =const

dE

du
= −c

∫
∂V

dSi τ
0i
GW(x, u+ r∗/c)

dJi
du

= −εijk
∫
∂V

dSl x
j τklGW(x, u+ r∗/c)

dP i

du
= −

∫
∂V

dSj τ
ij
GW(x, u+ r∗/c)

dGi
du

= Pi −
1

c

∫
∂V

dSj

(
xi τ0j

GW − r∗ τ
ij
GW

)
(x, u+ r∗/c)

Luc Blanchet (GRεCO) High-order PN calculations Prague 46 / 49



Radiation reaction and flux-balance equations

Direct calculation of the GW fluxes at infinity

A long calculation to control the leading 1/r2 and subleading 1/r3 terms in the
GW pseudo-tensor when r → +∞ gives the fluxes as full multipole series
parametrized by the multipole moments IL and JL up to order O(G2)

dE

du
= −

+∞∑
`=2

G

c2`+1

{
(`+ 1)(`+ 2)

(`− 1)``!(2`+ 1)!!

(`+1)

I L

(`+1)

I L

+
4`(`+ 2)

c2(`− 1)(`+ 1)!(2`+ 1)!!

(`+1)

J L
(`+1)

J L

}
dJi
du

= −εijk
+∞∑
`=2

G

c2`+1

{
(`+ 1)(`+ 2)

(`− 1)`!(2`+ 1)!!

(`)

I jL−1

(`+1)

I kL−1

+
4`2(`+ 2)

c2(`− 1)(`+ 1)!(2`+ 1)!!

(`)

J jL−1

(`+1)

J kL−1

}
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Radiation reaction and flux-balance equations

Direct calculation of the GW fluxes at infinity

A long calculation to control the leading 1/r2 and subleading 1/r3 terms in the
GW pseudo-tensor when r → +∞ gives the fluxes as full multipole series
parametrized by the multipole moments IL and JL up to order O(G2)

dPi
du

= −
+∞∑
`=2

G

c2`+3

{
2(`+ 2)(`+ 3)

`(`+ 1)!(2`+ 3)!!

(`+2)

I iL

(`+1)

I L

+
8(`+ 2)

(`− 1)(`+ 1)!(2`+ 1)!!
εijk

(`+1)

I jL−1

(`+1)

J kL−1

+
8(`+ 3)

c2(`+ 1)!(2`+ 3)!!

(`+2)

J iL
(`+1)

J L

}
dGi
du

= Pi

−
+∞∑
`=2

G

c2`+3

{
2(`+ 2)(`+ 3)

` `!(2`+ 3)!!

(`+1)

I iL

(`+1)

I L +
8(`+ 3)

c2`!(2`+ 3)!!

(`+1)

J iL
(`+1)

J L

}
︸ ︷︷ ︸

[Blanchet & Faye 2018; Compère, Oliveri & Seraj 2019]
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Radiation reaction and flux-balance equations

Any implication for the total recoil of a source?

1 We have obtained the balance equations

dP

dt
= −FP ,

dG

dt
= P − FG ,

2 Integrating these equations for a burst of GWs
with finite duration we obtain

P1 = −
∫ t1

t0

dt′ FP (t′) ,

Z1 =

∫ t1

t0

dt′
[
t′ FP (t′)− FG(t′)

]
.

3 The total recoil depends only on the linear momentum
flux (as in usual calculations)

GWs

t

t

0

1

P
Z1

1

Z =P =0
0 0

Luc Blanchet (GRεCO) High-order PN calculations Prague 48 / 49



Radiation reaction and flux-balance equations

The instantaneous CM position of a circular binary

1 The linear momentum is evaluated for a Newtonian
circular binary as usual [Fitchett 1983]

dP

dt
=

464

105

G4m5ω

c7r4

√
1− 4ν ν2 λ

P =
464

105

G4m5

c7r4

√
1− 4ν ν2 n

2 However in order to obtain the instantaneous
CM position we must also use the CM flux

dG

dt
= P +

544

105

G4m5

c7r4

√
1− 4ν ν2 n

G = −48

5

G4m5

c7r4ω

√
1− 4ν ν2 λ

3 It would be interesting to compare this prediction to
very accurate NR computations of the CM position
[Gerosa, Hébert & Stein 2018; Woodford, Boyle & Pfeiffer 2019]

m
1

m
2

V
recoil

CM motion

dP
dt

GW

dP
dt

CM dP
dt

GW= –

v
1

v
2
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