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TOA! Residual!

Model!

Fold! Fold!

A&simple&and&clean&experiment:&Pulsar&Timing&

Coherent!3ming!solu3on!about!1,000,000!more!precise!than!Doppler!method!!

Pulsar!3ming!measures!arrival!3me!(TOA):!
!

!

5.757451924362137(2) ms (2 atto seconds uncertainty)Ps =

(for different frequencies and including polarization)

PSR J0437-4715 

The beauty of the ToA signal

from P. Freire



At emission

Propagation

• Properties of NSs (dense matter, B, X)
• Dynamics of the system: binary (GR, X) 

and external (X, matter) interactions

• Propagation in the magnetosphere

At detection
• Fundamental ‘constants’ (X)

• Propagation of signal in the interstellar 
medium: ions, e, GWs, X

X = L(�, Fµ⌫)= � ~E · ~B

Pulsar timing for fundamental physiX
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At detection
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Pulsar timing for fundamental physiX



DM in galaxies (e.g. MW)
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In a WIMP medium
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better prospects in other WIMP models
(Randall et al 2014)

In a WIMP medium



Production mechanism and viable cosmology
Motivation from fundamental physics
Possibility of (direct or indirect) detection

Candidate should be a cold gravitating medium

On the DM landscape
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Light Scalar Dark Matter

• Produced by the misalignment mechanism
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Frozen when:
Hubble > mφ
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‘misaligned’ conditions set by early universe
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Scale of ~30 Mpc, Schive et al. 1406.6586

ULDM behaves like CDM at large-scales

ULDM
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Virialized configuration: collection of waves 
with distribution determined by properties from the galaxy
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FIG. 1. Simulated VULF based on the approach in Ref. [41]
with field value �(t) and time normalized by �DM and coher-
ence time ⌧c respectively. The inset plot displays the high-
resolution coherent oscillation starting at t = 0.

lacking 2 and is becoming more relevant as experiments
begin searching such regimes.

Here we focus on this regime, T ⌧ ⌧c, characteris-
tic of experiments searching for ultralight (pseudo)scalars
with masses . 10�13 eV [33–39] that have field coherence
times & 1 day. This mass range is of significant inter-
est as the lower limit on the mass of ultralight axions
is down to 10�22 eV and can be further extended if it
does not make up all of the DM [27]. Additionally, there
has been recent theoretical motivation for “fuzzy dark
matter” in the 10�22 � 10�21 eV range [27–30] and the
so-called string “axiverse” extends down to 10�33 eV [31].
Similar arguments also apply to dilatons and moduli [32].

Figure 1 shows a simulated VULF field, illustrating
the amplitude modulation present over several coherence
times. At short time scales (⌧ ⌧c) the field coherently os-
cillates at the Compton frequency, see the inset of Fig. 1,
where the amplitude �0 is fixed at a single value sampled
from its distribution. An unlucky experimentalist could
even have near-zero field amplitudes during the course of
their measurement.

On these short time scales the DM signal s(t) exhibits
a harmonic signature,

s(t) = �⇠�(t) ⇡ �⇠�0 cos(2⇡f�t+ ✓) , (1)

where � is the coupling strength to a standard-model field
and ✓ is an unknown phase. Details of the particular ex-
periment are accounted for by the factor ⇠. In this regime
the amplitude �0 is unknown and yields a time-averaged

2 We only found explicit investigation of the T ⌧ ⌧c regime in
Ref. [54] where the authors state the exponential distribution of
the dark matter energy density, and by the authors of Ref. [53]
discussing sensitivity in their Appendix E.

energy density h�(t)2iT⌧⌧c = �2
0/2. However, for times

much longer than ⌧c the energy density approaches the
ensemble average determined by h�2

0i = �2
DM. This field

oscillation amplitude is estimated by assuming that the
average energy density in the bosonic field is equal to the
local DM energy density ⇢DM ⇡ 0.4GeV/cm3, and thus
�DM = ~(m�c)�1p2⇢DM.

The oscillation amplitude sampled at a particular time
for a duration ⌧ ⌧c is not simply �DM, but rather a ran-
dom variable whose sampling probability is described by
a distribution characterizing the stochastic nature of the
VULF. Until recently, most experimental searches have
been in the m� � 10�13 eV regime with short coherence
times ⌧c ⌧ 1 day. However, for smaller boson masses
it becomes impractical to sample over many coherence
times: for example, ⌧c & 1 year for m� . 10�16 eV. As-
suming that �0 = �DM neglects the stochastic nature of
the bosonic dark matter field [33–39].

The net field �(t) is a sum of di↵erent field modes with
random phases. The oscillation amplitude, �0, results
from the interference of these randomly phased oscillat-
ing fields. This can be visualized as arising from a ran-
dom walk in the complex plane, described by a Rayleigh
distribution

p(�0) =
2�0

�2
DM

exp

✓
� �2

0

�2
DM

◆
, (2)

analogous to that of chaotic (thermal) light [55]. This
distribution implies that ⇠ 63% of all amplitude realiza-
tions will be below the r.m.s. value �DM.

We refer to the conventional approach assuming �0 =
�DM as deterministic and approaches that account for
the VULF amplitude fluctuations as stochastic. To com-
pare these two approaches we choose a Bayesian frame-
work and calculate the numerical factor a↵ecting cou-
pling constraints, allowing us to provide modified exclu-
sion plots of previous deterministic constraints [33–39].
It is important to emphasize that di↵erent frameworks
to interpret experimental data than presented here could
change the magnitude of this numerical factor [56–59].
In any case, accounting for this stochastic nature will
generically relax existing constraints as we show below.

Establishing constraints on coupling strength — We
follow the Bayesian framework [60] (see application to
VULFs in Ref. [41]) to determine constraints on the cou-
pling strength parameter �. Bayesian inference uses prior
information (such as assuming that one candidate makes
up all of the DM, or conditions imposed by the SHM) to
derive posterior probability distributions for given propo-
sitions or model parameters. One additional prior we
assume here is that the DM signal is well below the ex-
perimental noise floor. The central quantity of interest in
our case is the posterior distribution for possible values

Centers et al 19
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the field is homogeneous at scales
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Effects on binary system: pure gravity

µ ~̈r = ~FGR + ~FDM,halo

DB, LopezNacir, Sibiryakov 16, 19
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2

binary orbital frequency, its e↵ect is resonantly amplified
and leads to a secular change in the orbital period that
can be searched for experimentally. We now proceed to
the quantitative discussion. We start with the case when
DM and ordinary matter interact only gravitationally.

ULDM interacting only through gravity - The
energy-momentum of a free massive oscillating field (1)
corresponds to the density and pressure [16],

⇢DM =
m

2
��

2
0

2
, pDM = �⇢DM cos(2m�t+2⌥) . (2)

The latter generates an oscillating perturbation of the
metric. To find this we use the Newtonian gauge,

ds
2 = �(1 + 2�)dt2 + (1� 2 )�ijdx

i
dx

j
, (3)

and write down the trace of the (ij) Einstein equations,

6 ̈ + 2�(��  ) = 24⇡GpDM .

Neglecting the spatial gradients and using (2) we obtain,

 ̈ = �4⇡G⇢DM cos(2m�t+ 2⌥) . (4)

This can be viewed as a standing scalar GW. Similarly
to the usual GW’s, it produces an extra relative accel-
eration between the bodies in a binary system. This is
conveniently written in the Fermi normal coordinates as-
sociated to the center of mass of the binary [41],

�r̈
i = ��Ri

0j0r
j = � ̈ r

i
, (5)

where r
i is the vector connecting the two bodies and

�R
i
0j0 is the contribution of GW into the corresponding

components of the Riemann tensor. In the last equality
we evaluated �R

i
0j0 in the conformal gauge (3) since it

is coordinate independent at the linearized level.
Next, we compute the change in the energy of a binary

system with masses M1,2 during one orbital period Pb

due to its interaction with ULDM,

�Eb = µ

Z Pb

0
ṙ
i
�r̈

i
dt

= 4⇡G⇢DMµ

Z Pb

0
ṙ(t)r(t) cos(2m�t+ 2⌥)dt ,

where r is the distance between the bodies and µ ⌘
M1M2
M1+M2

is the reduced mass of the system. The energy
exchange is most e�cient when the orbital period is close
to an integer multiple of the period of metric oscillations.
Given that Pb / |Eb|�3/2, the change in Keplerian energy
leads to a secular drift of the orbital period. Defining

�! = 2m� � 2⇡N/Pb , |�!| ⌧ 2m� , (6)

and using the standard formulas of Keplerian mechanics
we obtain the time derivative of the period averaged over
time intervals Pb ⌧ �t ⌧ 2⇡/�!,

hṖbi = �6G⇢DMP
2
b
JN (Ne)

N
f(t) (7)

' �1.6⇥ 10�17
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where

f(t) = sin
�
�! t+ 2m�t0 + 2⌥

�
,

JN (x) are Bessel functions, e is the orbital eccentricity,
and t0 is the time of the first periastron passage since
t = 0. In the second line of (7) we have normalized ⇢DM

to the local DM density ⇠ 0.3GeV/cm3 in the neighbor-
hood of the Solar System. We observe that, depending
on the relative phase between the orbital motion and the
ULDM oscillations, the sign of hṖbi can be positive (de-
crease of the binary system energy) or negative (increase
of the energy). Furthermore, the sign alternates in time
with the period 2⇡/�! which can be used to discriminate
this e↵ect from other contributions to the measured Ṗb,
such as e.g. those due to the acceleration of the binary
with respect to the Solar System.

The expression (7) implies that the e↵ect vanishes for
circular orbits (e = 0) and grows with the orbital ec-
centricity. Besides, it is stronger for systems with large
orbital periods. These points are illustrated in Fig. 1. We
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FIG. 1. Secular derivative of the orbital period given in
eq. (7) as a function of the dark matter mass. We have set
f(t) = �1 for the numerical estimate. Solid lines assume
resonances for N = 1 (m� = ⇡/Pb), while dashed ones are for
N = 2 (m� = 2⇡/Pb). The corresponding orbital periods are
shown on the two top axes. The pink (lower) lines correspond
to ⇢DM = 0.3GeV/cm3 and e = 0.01, the blue (middle) lines
are for the same ⇢DM but e = 0.9, while the grey (upper)
lines correspond to ⇢DM = 10GeV/cm3 and e = 0.9. The
olive band on the left marks the regions m� . 2.3⇥ 10�23eV
that can be probed by future pulsar timing arrays [16].

see that slow non-relativistic systems with orbital periods
of tens to hundreds of days and high eccentricity present
suitable targets to search for ULDM in the mass range
m� = 10�23 ÷ 10�21eV. At present there is a dozen of
known binary pulsars satisfying these requirements [45];
this number is expected to increase dramatically with the
operation of the Square Kilometer Array [46]. Note that
for such systems the strength of the resonance on higher
harmonics (N � 2) is comparable to the strength of the

Prospects of observation

This would be a pure gravitational test of this DM model
but it is beyond reach….

DB, LopezNacir, Sibiryakov 16



Effects on binary system: DM-matter interaction

µ ~̈r = ~FGR + ~FDM,halo

~̈RCM 6= 0

DB, LopezNacir, Sibiryakov 16, 19

again

bosons can couple directly to matter 
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Direct coupling: Resonances
Example: system J1903+0327 (                     ,               )Pb = 95days e = 0.44

Ṗb = (�52± 33)� 10�12

Limits on linear coupling

Solar System 
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current

future for 

precision 
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NB. Pulsars probe strong gravity regime
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Pb = 95 days , e = 0.44

Ṗb = (�52± 33)⇥ 10�12

Freire et al 2011
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Direct coupling: Resonances
Example: system J1903+0327 (                     ,               )Pb = 95days e = 0.44

Ṗb = (�52± 33)� 10�12

Limits on quadratic coupling
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Secular effects at J1903+0327 



Direct coupling: Broad-band 
Example: system J1713+0747 (                         ,                      )Pb = 67.8 days e = 7� 10�5

ė � 10�17 s�1
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NB. Further limits can come from statistical analysis of binaries 
with low eccentricities 

Limits on quadratic coupling

Broadband limits

slide courtesy of S. Sibiryakov

from J1713+0747



Conclusions

WIMPS at the binary location modifies the 
orbits but hard to measure

ULDM has better chances: rich phenomenology 
coherent oscillations, large density gradients 

The signals from pulsars can test new physics 
at production, propagation, detection

Pure gravity case out of reach

Case of DM-Matter interaction generates 
best constraints at for certain DM models



Future work

Detailed analysis of specific systems

DM substructure with large over-densities 

Other effects related to propagation or at production 

Study the effects in populations (not instantaneously)

Other interactions (torques?)

(in the spirit of S. Sibiryakov talk)



Future work

Detailed analysis of specific systems

DM substructure with large over-densities 

Other effects related to propagation or at production 

Study the effects in populations (not instantaneously)

Other interactions (torques?)

P. Freire:  “Nature has always been good to us”

SKA, MeerKAT, FAST,…: new observations may bring new surprises!

(in the spirit of S. Sibiryakov talk)



Propagation of EM waves in a DM medium

g �Fµ⌫ F̃
µ⌫ = g � ~E · ~B

The DM may be also coupled to the photons

� = �0 cos(mt+ ↵(x))

 modifies the dispersion relation of light
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Z
Aµ(xpp)dx

µ
DM

charged DM axions

e.g. axions

time dependent birefringence✓(t)

oscillating polarisation angle!
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using signals from pulsars

Constraints


