

Probing light dark matter with pulsar observations

Diego Blas

based on DB, D. Lopez-Nacir, S. Sibiryakov 1612.06789 + 1910.08544 A. Caputo, L. Sberna, M. Frias, DB, P. Pani, L. Shao, W. Yan 1902.02695

The beauty of the ToA signal

Pulsar timing for fundamental physiX

- Properties of NSs (dense matter, B, X)
- Dynamics of the system: binary (GR, X) and external (X, matter) interactions

Propagation

Propagation in the magnetosphere

$$X = \mathcal{L}(\phi, F^{\mu\nu}) = \phi \, \vec{E} \cdot \vec{B}$$

 Propagation of signal in the interstellar medium: ions, e, GWs, X

At detection

• Fundamental 'constants' (X)

Pulsar timing for fundamental physiX

At emission

- Properties of NSs (dense matter, B, X)
- Dynamics of the system: binary (GR, X) and external (X, matter) interactions

Propagation

- Propagation in the magnetosphere $X = \mathcal{L}(\phi, F^{\mu\nu}) = \phi \, \vec{E} \cdot \vec{B}$
- Propagation of signal in the interstellar medium: ions, e, GWs, X

At detection

Fundamental 'constants' (X)

X= (Ultra) light DM

DM in galaxies (e.g. MW)

Orbital motion in the presence of WIMPS

Orbital motion in the presence of WIMPS

On the DM landscape

- Candidate should be a cold gravitating medium
- Production mechanism and viable cosmology
- Motivation from fundamental physics
- Possibility of (direct or indirect) detection

Ultra light (fuzzy) DM

$$\mathcal{L} = \frac{1}{2} \left[\left(\partial_{\mu} \phi \right)^2 - m^2 \phi^2 \right]$$

homogeneous and isotropic evolution

Potential Energy

$$\ddot{\phi} + H\dot{\phi} + m^2\phi = 0$$

'misaligned' conditions set by early universe

•
$$m \ll H$$
 $\phi = ct.$
• $m \gg H$ $\phi = \phi_0 \cos(mt + \alpha(x))$

$$\rho_{DM} = \frac{m^2 \phi_0^2(t)}{2} \sim a(t)^{-3}$$

 $p = -\rho_{DM}\cos(2mt + 2\alpha) \qquad \langle p \rangle_{mt \gg 1} = 0$

ULDM behaves like CDM at large-scales

Ultra light DM in our Galaxy

 $F_{\mu\nu}$

The bosonic field has huge occupation numbers with random phases

i) escape velocity $\sim 2 \times 10^{-3}c$ ii) size 100 kpc $\Delta x \Delta p \gtrsim \hbar \rightarrow N_s \sim 10^{75} \left(\frac{m}{\text{eV}}\right)^3$ $N_p = \frac{M_{MW}}{N_s m} \sim 10^3 \left(\frac{\text{eV}}{m}\right)^4$

For low masses it can be considered as a classical field

$$\mathcal{L} = \frac{1}{2} \left[\left(\partial_{\mu} \phi \right)^2 - m^2 \phi^2 \right] + \text{virialized halo}$$

Ultra-light (fuzzy) DM in galactic halos

Virialized configuration: collection of waves with distribution determined by properties from the galaxy

It is also very homogenous

It is also very homogenous

Effects on binary system: pure gravity

DB, LopezNacir, Sibiryakov 16, 19

$$\ddot{\vec{R}}_{CM} = 0$$

$$\mu \, \ddot{\vec{r}} = \vec{F}_{GR} + \vec{F}_{DM,halo} \propto \vec{r}$$

$$\delta E_b = \mu \int_0^{P_b} dt \, \dot{\vec{r}} \cdot \vec{F} \xrightarrow{P_b} \dot{P}_b \propto |E_b|^{-3/2} \dot{P}_b$$

Can be expressed as modification of orbital parameters

e.g. $\frac{\dot{a}}{a} = -\frac{2e}{\omega_b\sqrt{1-e^2}}\ddot{\psi}\frac{r}{a}\sin\theta$ $\dot{e} = -\frac{\sqrt{1-e^2}}{\omega_b}\ddot{\psi}\frac{r}{a}\sin\theta$

 $\text{if} \quad m \approx N \frac{2\pi}{P_b}$

the effect accumulates in every orbit (resonances appear)

Prospects of observation

DB, LopezNacir, Sibiryakov 16

This would be a pure gravitational test of this DM model but it is beyond reach....

Effects on binary system: DM-matter interaction

DB, LopezNacir, Sibiryakov 16, 19

bosons can couple directly to matter

$$q \int A_{\mu}(x_{pp}) \mathrm{d}x^{\mu}$$

for scalars.

$$\alpha \int \phi(x_{pp}) ds + \beta \int [\phi(x_{pp})]^2 ds \cdots \\ \left(\begin{array}{c} \text{Armaleo, LopezNacir, Urban} \\ \text{for spin1 and spin 2 DN} \end{array} \right) \\ \vec{F} \qquad \qquad \text{again} \\ \vec{\vec{R}}_{CM} \neq 0 \qquad \text{(swamped by systematics)} \\ \mu \, \vec{\vec{r}} = \vec{F}_{\text{GR}} + \vec{F}_{\text{DM,halo}}(\phi(t)) \\ \delta L_b = \mu \int_0^{P_b} dt \, \vec{r} \times \vec{F} \quad \blacktriangleright \quad L_b^2 \propto P_b^{2/3} \left(1 - e^2\right) \quad \blacktriangleright \quad \dot{e} \\ \end{array}$$

Secular effects at JI903+0327 $P_b = 95 \text{ days}^{P_b} = 95 \text{ days}^{P_b} e = 0.44$ Freire et al 2011 $\dot{P}_b = (-52 \pm 33) \times 10^{-12}$

slide courtesy of S. Sibiryakov

DB, LopezNacir, Sibiryakov 16, 19

Secular effects at J1903+0327

Limits on quadratic coupling

Broadband limits

from J1713+0747 ($P_b = 67.8 \,\mathrm{days}$, $e = 7 \times 10^{-5}$) $\dot{e} \lesssim 10^{-17} \,\mathrm{s}^{-1}$

slide courtesy of S. Sibiryakov

Conclusions

The signals from pulsars can test new physics at production, propagation, detection

WIMPS at the binary location modifies the orbits but hard to measure

ULDM has better chances: rich phenomenology coherent oscillations, large density gradients

- Pure gravity case out of reach
- Case of DM-Matter interaction generates best constraints at for certain DM models

Future work

- Detailed analysis of specific systems
- Study the effects in populations (not instantaneously)
- DM substructure with large over-densities (in the spirit of S. Sibiryakov talk)
- Other interactions (torques?)

Other effects related to propagation or at production

Future work

- Detailed analysis of specific systems
- Study the effects in populations (not instantaneously)
- DM substructure with large over-densities (in the spirit of S. Sibiryakov talk)
- Other interactions (torques?)

- Other effects related to propagation or at production
- P. Freire: "Nature has always been good to us"

SKA, MeerKAT, FAST,...: new observations may bring new surprises!

Caputo, Sberna, Frias, DB, Pani, Shao, Yan 1902.02695

using signals from pulsars

