Fundamental Physics with High-Energy Cosmic Neutrinos

Mauricio Bustamante

Niels Bohr Institute, University of Copenhagen

Multimessengers @ Prague December 05, 2019

1 They have the highest energies (~PeV) → Probe physics at new energy scales

- 1 They have the highest energies (~PeV) → Probe physics at new energy scales
- 2 They have the longest baselines (~Gpc) → Tiny effects can accumulate and become observable

- 1 They have the highest energies (~PeV) → Probe physics at new energy scales
- 2 They have the longest baselines (~Gpc) → Tiny effects can accumulate and become observable

3 Neutrinos are weakly interacting → New effects may stand out more clearly

3 Neutrinos are weakly interacting → New effects may stand out more clearly

4 Neutrinos have a unique quantum number: flavor
→ Powerful probe of neutrino physics (and astrophysics)

3 Neutrinos are weakly interacting → New effects may stand out more clearly

4 Neutrinos have a unique quantum number: flavor
→ Powerful probe of neutrino physics (and astrophysics)

IceCube (8 years)

km³ in-ice Cherenkov detector

103 contained events, 15 TeV-2 PeV

103 contained events, 15 TeV-2 PeV

Status quo of high-energy cosmic neutrinos

What we know

- Isotropic distribution of sources
- Spectrum is a power law $\propto E^{-p}$
- At least some sources are gammaray transients
- No correlation between directions of cosmic rays and neutrinos
- Flavor composition: compatible with equal number of v_e , v_{μ} , v_{τ}
- No evident new physics

What we don't know

- The sources of the diffuse v flux
- The ν production mechanism
- ► The spectral index of the spectrum
- ► A spectral cut-off at a few PeV?
- ► Are there Galactic *v* sources?
- ► The precise flavor composition
- ► Is there new physics?

Status quo of high-energy cosmic neutrinos

But we have solid theory expectations + fast experimental progress

What we know

- Isotropic distribution of sources
- Spectrum is a power law $\propto E^{-p}$
- At least some sources are gammaray transients
- No correlation between directions of cosmic rays and neutrinos
- Flavor composition: compatible with equal number of v_e , v_{μ} , v_{τ}
- No evident new physics

What we don't know -

- The sources of the diffuse v flux
- The v production mechanism
- ► The spectral index of the spectrum
- ► A spectral cut-off at a few PeV?
- ► Are there Galactic *v* sources?
- ► The precise flavor composition
- ► Is there new physics?

In the face of astrophysical unknowns, can we extract fundamental TeV–PeV ν physics?

In the face of astrophysical unknowns, can we extract fundamental TeV–PeV ν physics?

In the face of astrophysical unknowns, can we extract fundamental TeV–PeV ν physics?

Already today.

Neutrino physicist-

Figure courtesy of Markus Ahlers Also in: Van Elewyck *et al.*, PoS(ICRC2019), 1023

Also in: Van Elewyck et al., PoS(ICRC2019), 1023

Also in: Van Elewyck et al., PoS(ICRC2019), 1023

$$p + \gamma_{\text{target}} \rightarrow \Delta^+ \rightarrow \begin{cases} p + \pi^0, \ \text{Br} = 2/3 \\ n + \pi^+, \ \text{Br} = 1/3 \end{cases}$$

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3\\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \\ \pi^{0} \rightarrow \gamma + \gamma \\ \pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu} \\ n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e} \end{cases}$$

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$
$$\pi^{0} \rightarrow \gamma + \gamma$$
$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$
$$n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}$$

Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 10

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$
$$\pi^{0} \rightarrow \gamma + \gamma$$
$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$
$$n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}$$

1 PeV 20 PeV Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 10

Neutrinos – The ultimate smoking gun of cosmic accelerators

Gamma rays Neutrinos UHE Cosmic rays

Point back at sources

Size of horizon

Energy degradation

Relative ease to detect

Note: This is a simplified view

Neutrinos – The ultimate smoking gun of cosmic accelerators

Size of horizon

Energy degradation

Relative ease to detect

Note: This is a simplified view

Energy degradation

Relative ease to detect

Relative ease to detect

IceCube – What is it?

- ► Km³ in-ice Cherenkov detector in Antarctica
- ► >5000 PMTs at 1.5–2.5 km of depth
- ► Sensitive to neutrino energies > 10 GeV

How does IceCube see TeV–PeV neutrinos?

Deep inelastic neutrino-nucleon scattering

Neutral current (NC) Charged current (CC)

$$\nu_x + N \rightarrow \nu_x + X$$

 $\nu_l + N \rightarrow l + X$

How does IceCube see TeV–PeV neutrinos?

Deep inelastic neutrino-nucleon scattering

At TeV–PeV, the average inelasticity $\langle y \rangle = 0.25-0.30$

How does IceCube see TeV–PeV neutrinos?

Deep inelastic neutrino-nucleon scattering

At TeV–PeV, the average inelasticity $\langle y \rangle = 0.25-0.30$

Fundamental physics with HE cosmic neutrinos

Numerous new-physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$

So we can probe $\kappa_n \sim 4 \cdot 10^{-47} (E/PeV)^{-n} (L/Gpc)^{-1} PeV^{1-n}$

► Improvement over current limits: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

Fundamental physics can be extracted from four neutrino observables:

- Spectral shape
- Angular distribution
- Flavor composition
- Timing

Fundamental physics with HE cosmic neutrinos

► Numerous new-physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$ $\begin{cases}
 n = -1: \text{ neutrino decay} \\
 n = 0: \text{ CPT-odd Lorentz violation} \\
 n = +1: \text{ CPT-even Lorentz violation}
\end{cases}$

► So we can probe $\kappa_n \sim 4 \cdot 10^{-47} (E/PeV)^{-n} (L/Gpc)^{-1} PeV^{1-n}$

► Improvement over current limits: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

Fundamental physics can be extracted from four neutrino observables:

- ► Spectral shape
- Angular distribution
- ► Flavor composition
- ► Timing

Fundamental physics with HE cosmic neutrinos

► Numerous new-physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$ $\begin{cases}
 n = -1: \text{ neutrino decay} \\
 n = 0: \text{ CPT-odd Lorentz violation} \\
 n = +1: \text{ CPT-even Lorentz violation}
\end{cases}$

► So we can probe $\kappa_n \sim 4 \cdot 10^{-47} (E/PeV)^{-n} (L/Gpc)^{-1} PeV^{1-n}$

► Improvement over current limits: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

Fundamental physics can be extracted from four neutrino observables:

Spectral shape ► Timing

In spite of Angular distribution
 Flavor composition
 In spice of poor energy, angular, flavor reconstruction & astrophysical unknowns

	• DM-v interaction •DE-v interaction •Lorentz+CPT violation Neutrino decay.
•Heavy relics DM annihilation• DM decay•	Long-range interactions. Secret vv interactions Supersymmetry. • Sterile v Effective operators.
	•NSI Extra dimensions. •Superluminal v •Monopoles

Standard expectation: Isotropy (for diffuse flux)

Standard expectation: Isotropy (for diffuse flux)

Standard expectation: Isotropy (for diffuse flux)

Standard expectation: ν and γ from transients arrive simultaneously

Note: Not an exhaustive list

Standard expectation: Equal number of v_e , v_{μ} , v_{τ}

More: 1907.08690 Argüelles, MB, Kheirandish, Palomares-Ruiz, Salvadó, Vincent

Standard expectation: Isotropy (for diffuse flux)

Standard expectation: ν and γ from transients arrive simultaneously

Note: Not an exhaustive list

Standard expectation: Equal number of v_e , v_{μ} , v_{τ}

More: 1907.08690 Argüelles, MB, Kheirandish, Palomares-Ruiz, Salvadó, Vincent

Extrapolating the cross section to high energies

Measuring the high-energy cross section

Hooper, *PRD* 2002; Hussain *et al.*, *PRL* 2006; Borriello *et al.*, *PRD* 2008 Hussain, Mafatia, McKay, *PRD* 2008 Connolly, Thorne, Waters, *PRD* 2011; Marfatia, McKay, Weiler, *PLB* 2015

Measuring the high-energy cross section

Hooper, *PRD* 2002; Hussain *et al.*, *PRL* 2006; Borriello *et al.*, *PRD* 2008 Hussain, Mafatia, McKay, *PRD* 2008 Connolly, Thorne, Waters, *PRD* 2011; Marfatia, McKay, Weiler, *PLB* 2015

Measuring the high-energy cross section

Hooper, *PRD* 2002; Hussain *et al.*, *PRL* 2006; Borriello *et al.*, *PRD* 2008 Hussain, Mafatia, McKay, *PRD* 2008 Connolly, Thorne, Waters, *PRD* 2011; Marfatia, McKay, Weiler, *PLB* 2015

- Fold in astrophysical unknowns (spectral index, normalization)
- Compatible with SM predictions
- Still room for new physics
- ► Today, using IceCube:
 - Extracted from ~60 showers in 6 yr
 - Limited by statistics
- ► Future, using IceCube-Gen2:
 - ► × 5 volume \Rightarrow 300 showers in 6 yr
 - ► Reduce statistical error by 40%

Cross sections from: MB & Connolly PRL 2019 IceCube, Nature 2017

UHE uncertainties are actually smaller: Cooper-Sarkar, Mertsch, Sarkar *et al.*, *JHEP* 2011

- Fold in astrophysical unknowns (spectral index, normalization)
- Compatible with SM predictions
- Still room for new physics
- ► Today, using IceCube:
 - Extracted from ~60 showers in 6 yr
 - Limited by statistics
- ► Future, using IceCube-Gen2:
 - ► × 5 volume \Rightarrow 300 showers in 6 yr
 - ► Reduce statistical error by 40%

Cross sections from: MB & Connolly PRL 2019 IceCube, Nature 2017

MB & Connolly PRL 2019 See also: IceCube, Nature 2017

New physics in the spectral shape: $\nu\nu$ interactions

New physics in the spectral shape: $\nu\nu$ interactions

New physics in the spectral shape: $\nu\nu$ interactions

New physics in the spectral shape: vv interactions

New physics in the angular distribution: ν -DM interactions

Interaction between astrophysical neutrinos and the Galactic dark matter profile -

Expected: Fewer neutrinos coming from the Galactic Center

Observed: Isotropy

Argüelles, Kheirandish, Vincent, PRL 2017

New physics in the angular distribution: ν -DM interactions

Interaction between astrophysical neutrinos and the Galactic dark matter profile -

Observed: Isotropy

Argüelles, Kheirandish, Vincent, PRL 2017

New physics in the energy & angular distribution

Lorentz invariance violation – Hamiltonian: $H \sim m^2/(2E) + a^{(3)} - E \cdot c^{(4)} + E^2 \cdot a^{(5)} - E^3 \cdot c^{(6)}$

 $E_{\mu}(\text{GeV})$ IceCube, Nature Phys. 2018

Flavor composition

Astrophysical neutrino sources

Earth

► Different processes yield different ratios of neutrinos of each flavor: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{tot}$

Flavor ratios at Earth ($\alpha = e, \mu, \tau$):

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\nu_{\beta}\to\nu_{\alpha}} f_{\beta,S}$$

Flavor composition

Astrophysical neutrino sources

 $f_{\alpha,\oplus} = \sum P_{\nu_{\beta} \to \nu_{\alpha}} f_{\beta,\mathrm{S}}$

 $\beta = e.\mu.\tau$

► Different processes yield different ratios of neutrinos of each flavor: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{tot}$

Flavor ratios at Earth ($\alpha = e, \mu, \tau$):

Earth

Reading a ternary plot

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it: Follow the tilt of the tick marks, *e.g.*,

 $(e:\mu:\tau) = (0.30:0.45:0.25)$

One likely TeV–PeV ν production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

Full π decay chain (1/3:2/3:0)_s

Note: v and \overline{v} are (so far) indistinguishable in neutrino telescopes

One likely TeV–PeV ν production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

One likely TeV–PeV ν production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

One likely TeV–PeV ν production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

One likely TeV–PeV ν production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

One likely TeV–PeV ν production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

Full π decay chain (1/3:2/3:0)_s

Muon damped (0:1:0)s

Neutron decay (1:0:0)s

Note: v and \overline{v} are (so far) indistinguishable in neutrino telescopes

All possible flavor ratios at the sources

+

Vary oscillation parameters within 3σ

Note: v and \overline{v} are (so far) indistinguishable in neutrino telescopes

IceCube flavor composition

Today IceCube

► Best fit:

 $(f_e:f_\mu:f_\tau)_{\oplus} = (0.49:0.51:0)_{\oplus}$

- Compatible with standard source compositions
- Hints of one v_{τ} (not shown)

Near future (2022) IceCube upgrade

In 10 years (2030s)

IceCube-Gen2

Assuming production by the full pion decay chain

Plus possibly better flavor-tagging, *e.g.*, muon and neutron echoes [Li, MB, Beacom *PRL* 2019]

How to fill out the flavor triangle?

 $H_{\text{tot}} = H_{\text{std}} + H_{\text{NP}}$ $H_{\text{std}} = \frac{1}{2E} U_{\text{PMNS}}^{\dagger} \operatorname{diag} \left(0, \Delta m_{21}^2, \Delta m_{31}^2\right) U_{\text{PMNS}}$ $H_{\text{NP}} = \sum \left(\frac{E}{\Lambda_n}\right)^n U_n^{\dagger} \operatorname{diag}\left(O_{n,1}, O_{n,2}, O_{n,3}\right) U_n$ This can populate *all* of the triangle – • Use current atmospheric bounds on $O_{n,i}$: $O_0 < 10^{-23} \text{ GeV}, O_1/\Lambda_1 < 10^{-27} \text{ GeV}$ Sample the unknown new mixing angles

See also: Ahlers, **MB**, Mu, *PRD* 2018; Rasmusen *et al.*, *PRD* 2017; **MB**, Beacom, Winter *PRL* 2015; **MB**, Gago, Peña-Garay *JCAP* 2010; Bazo, **MB**, Gago, Miranda *IJMPA* 2009; + many others

Argüelles, Katori, Salvadó, PRL 2015

How to fill out the flavor triangle?

0.0.1.0For n = 0 $H_{\text{tot}} = H_{\text{std}} + H_{\text{NP}}$ (similar for n = 1) (1:2:0)(1:0:0) $H_{\text{std}} = \frac{1}{2F} U_{\text{PMNS}}^{\dagger} \operatorname{diag}\left(0, \Delta m_{21}^2, \Delta m_{31}^2\right) U_{\text{PMNS}}$ 0.8 0.2 (0:1:0)(0:0:1) $H_{\text{NP}} = \sum \left(\frac{E}{\Lambda_n}\right)^n U_n^{\dagger} \operatorname{diag}\left(O_{n,1}, O_{n,2}, O_{n,3}\right) U_n$ 0.4 0.6Q R This can populate *all* of the triangle – 0.6 0.4• Use current atmospheric bounds on $O_{n,i}$: $O_0 < 10^{-23}$ GeV, $O_1/\Lambda_1 < 10^{-27}$ GeV 0.8 0.2Sample the unknown new mixing angles 0.00.20.40.60.80.0 1.0 $lpha_{c}^{\oplus}$ See also: Ahlers, MB, Mu, PRD 2018; Rasmusen et al., PRD 2017; MB, Beacom, Winter PRL 2015;

MB, Gago, Peña-Garay JCAP 2010; Bazo, **MB**, Gago, Miranda IJMPA 2009; + many others

An exciting decade ahead

34

POEMMA TRINITY

An exciting decade ahead

+ Improved systematics

GRAND

POEMMA TRINITY

An exciting decade ahead

+ Improved systematics

34

GRAND

POEMMA TRINITY

What are you taking home?

Cosmic neutrinos are incisive probes of TeV–PeV physics

▶ We can do this *already today*, in spite of unknowns

► New physics comes in many shapes — so we need to be thorough

Exciting prospects: larger statistics, better reconstruction, higher energies

More?

Fundamental physics with high-energy cosmic neutrinos today and in the future, 1907.08690
 Astro2020: Fundamental physics with high-energy cosmic neutrinos, 1903.04333
 Astro2020: Astrophysics uniquely enabled by observations of high-energy cosmic neutrinos, 1903.04334

What are you taking home?

- Cosmic neutrinos are incisive probes of TeV–PeV physics
- ▶ We can do this *already today*, in spite of unknowns

- New physics comes in many shapes so we need to be thorough
- Exciting prospects: larger statistics, better reconstruction, higher energies

More?

Fundamental physics with high-energy cosmic neutrinos today and in the future, 1907.08690
 Astro2020: Fundamental physics with high-energy cosmic neutrinos, 1903.04333
 Astro2020: Astrophysics uniquely enabled by observations of high-energy cosmic neutrinos, 1903.04334

Backup slides

Flavor-transition probability: the quick and dirty of it

► In matrix form:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1}^* & U_{e2}^* & U_{e3}^* \\ U_{\mu1}^* & U_{\mu2}^* & U_{\mu3}^* \\ U_{\tau1}^* & U_{\tau2}^* & U_{\tau3}^* \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

▶ Pontecorvo-Maki-Nakagawa-Sakata matrix ($c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij}$):

Flavor-transition probability: the quick and dirty of it

• In matrix form:
$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1}^{*} & U_{e2}^{*} & U_{e3}^{*} \\ U_{\mu1}^{*} & U_{\mu2}^{*} & U_{\mu3}^{*} \\ U_{\tau1}^{*} & U_{\tau2}^{*} & U_{\tau3}^{*} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \xrightarrow{\theta_{1s} \approx 9^{\circ}} \\ \theta_{1s} \approx 9^{\circ} \\ \theta_{1s} \approx 9^{\circ} \\ \theta_{1z} \approx 34^{\circ} \\ \delta \approx 222^{\circ} \end{pmatrix}$$
• Pontecorvo-Maki-Nakagawa-Sakata matrix $(c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij})$:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha_{1}/2} & 0 & 0 \\ 0 & e^{i\alpha_{2}/2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Atmospheric Cross mixing Solar Majorana CP phases
• Probability for $\nu_{\alpha} \rightarrow \nu_{\beta}$: $P_{\nu_{\alpha} \rightarrow \nu_{\beta}} = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}) \sin^{2} \left(\Delta m_{ij}^{2}\frac{L}{4E}\right)$
 $+ 2 \sum_{i>j} \operatorname{Im}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}) \sin\left(\Delta m_{ij}^{2}\frac{L}{2E}\right)$

... But high-energy neutrinos oscillate *fast*

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re}(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin^{2} \left(\Delta m_{ij}^{2} \frac{L}{4E}\right) + 2 \sum_{i>j} \operatorname{Im}(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin\left(\Delta m_{ij}^{2} \frac{L}{2E}\right)$$

Oscillation length for 1-TeV ν : $2\pi \times 2E/\Delta m^2 \sim 0.1$ pc

~ 8% of the way to Proxima Centauri
≪ Distance to Galactic Center (8 kpc)
≪ Distance to Andromeda (1 Mpc)
≪ Cosmological distances (few Gpc)

We cannot resolve oscillations, so we use instead the average probability:

$$\langle P_{\nu_{\alpha} \to \nu_{\beta}} \rangle = \sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2$$

... But high-energy neutrinos oscillate *fast*

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re}(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin^{2} \left(\Delta m_{ij}^{2} \frac{L}{4E}\right) + 2 \sum_{i>j} \operatorname{Im}(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin\left(\Delta m_{ij}^{2} \frac{L}{2E}\right)$$

Oscillation length for 1-TeV ν : $2\pi \times 2E/\Delta m^2 \sim 0.1$ pc

~ 8% of the way to Proxima Centauri
< Distance to Galactic Center (8 kpc)
< Distance to Andromeda (1 Mpc)
< Cosmological distances (few Gpc)

We cannot resolve oscillations, so we use instead the average probability: -

$$\langle P_{\nu_{\alpha} \to \nu_{\beta}} \rangle = \sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2$$

Measured: Flavor ratios at Earth

Invert flavor oscillations

Inferred: Flavor ratios at astrophysical sources

Posterior probability density of $f_{\alpha,S}$ being the flavor ratios at the sources:

0

$$\mathcal{P}(f_{\alpha,\mathrm{S}}) \equiv \int \mathrm{d}\boldsymbol{\theta} \frac{\mathcal{P}(\boldsymbol{\theta})}{\mathcal{N}(\boldsymbol{\theta})} \mathcal{L}_{\oplus} \left[f_{e,\oplus}(f_{\alpha,\mathrm{S}},\boldsymbol{\theta}), f_{\mu,\oplus}(f_{\alpha,\mathrm{S}},\boldsymbol{\theta}) \right]$$
$$\boldsymbol{\theta} \equiv (\theta_{12}, \theta_{23}, \theta_{13}, \delta_{\mathrm{CP}})$$
Normalization: $\mathcal{N}(\boldsymbol{\theta}) \equiv \int_{-\infty}^{1} \mathrm{d}f_{e,\mathrm{S}} \int \mathrm{d}f_{\mu,\mathrm{S}} \ \mathcal{L}_{\oplus} \left[f_{e,\oplus}(f_{\alpha,\mathrm{S}},\boldsymbol{\theta}), f_{\mu,\oplus}(f_{\alpha,\mathrm{S}},\boldsymbol{\theta}) \right]$

MB & Ahlers, *PRL* 2019

0

103 contained events between 15 TeV – 2 PeV

I. Taboada, Neutrino 2018

103 contained events between 15 TeV – 2 PeV

Astrophysical v flux detected at > 7σ (Normalization ok, but steep spectrum)

I. Taboada, Neutrino 2018
What has IceCube found so far (7.5 years)?

Arrival directions compatible with isotropy

What has IceCube found so far (7.5 years)?

Flavor composition compatible with equal proportion of each flavor

Flavor – What is it good for?

Trusting particle physics and learning about astrophysics

Trusting astrophysics and learning about particle physics

Using unitarity to constrain new physics

 $H_{tot} = H_{std} + H_{NP}$

New mixing angles unconstrained

- Use unitarity $(U_{NP}U_{NP}^{\dagger} = 1)$ to bound all possible flavor ratios at Earth
- Can be used as prior in new-physics searches in IceCube

Ahlers, **MB**, Mu, *PRD* 2018 See also: Xu, He, Rodejohann, *JCAP* 2014

What lies beyond? *Take your pick*

- High-energy effective field theories
 - Violation of Lorentz and CPT invariance
 [Barenboim & Quigg, PRD 2003; MB, Gago, Peña-Garay, JHEP 2010; Kostelecky & Mewes 2004]
 - Violation of equivalence principle [Gasperini, PRD 1989; Glashow et al., PRD 1997]
 - Coupling to a gravitational torsion field [De Sabbata & Gasperini, Nuovo Cim. 1981]
 - Renormalization-group-running of mixing parameters [MB, Gago, Jones, JHEP 2011]
 - General non-unitary propagation [Ahlers, MB, Mu, PRD 2018]
- Active-sterile mixing [Aeikens et al., JCAP 2015; Brdar, JCAP 2017]
- Flavor-violating physics
 - New neutrino-electron interactions

[MB & Agarwalla, PRL 2019]

New *vv* interactions

[Ng & Beacom, PRD 2014; Cherry, Friedland, Shoemaker, 1411.1071; Blum, Hook, Murase, 1408.3799]

Toho Company Ltd.

▶ ...

Ultra-long-range flavorful interactions

► Simple extension of the SM: Promote the global lepton-number symmetries L_e - L_μ , L_e - L_τ to local symmetries

- They introduce new interaction between electrons and ν_e and ν_{μ} or ν_{τ} mediated by a new neutral vector boson (*Z'*):
 - Affects oscillations
 - ► If the *Z*′ is *very* light, *many* electrons can contribute

X.-G. He, G.C. Joshi, H. Lew, R. R. Volkas, *PRD* 1991 / R. Foot, X.-G. He, H. Lew, R. R. Volkas, *PRD*A. Joshipura, S. Mohanty, *PLB* 2004 / J. Grifols & E. Massó, *PLB* 2004 / A. Bandyopadhyay, A. Dighe, A. Joshipura, *PRD*M.C. González-García, P..C. de Holanda, E. Massó, R. Zukanovich Funchal, *JCAP* 2007 / A. Samanta, *JCAP*S.-S. Chatterjee, A. Dasgupta, S. Agarwalla, *JHEP*

The new potential sourced by an electron

Under the L_e - L_μ or L_e - L_τ symmetry, an electron sources a Yukawa potential —

A neutrino "feels" all the electrons within the interaction range $\sim (1/m')$

The new potential sourced by an electron

Under the L_e - L_μ or L_e - L_τ symmetry, an electron sources a Yukawa potential —

A neutrino "feels" all the electrons within the interaction range $\sim (1/m')$

 $H_{tot} = H_{vac}$ **Standard oscillations:** Neutrinos change flavor because this is non-diagonal

 $H_{tot} = H_{vac}$ Standard oscillations: Neutrinos change flavor because this is non-diagonal $P_{\nu_{\alpha} \to \nu_{\beta}} \left(\theta_{ij}, \delta_{\rm CP} \right)$

$$\begin{aligned} &= \mathrm{diag}(V_{e\mu}, -V_{e\mu}, 0) \\ \mathrm{H_{tot}} = \mathrm{H_{vac}} + \underbrace{\mathrm{V}_{e\beta}}_{&\text{New neutrino-electron interaction:}} \\ & \text{New neutrino-electron interaction:} \\ & \text{This is diagonal} \end{aligned}$$

$$H_{tot} = H_{vac} + V_{e\beta}$$

... We can use high-energy astrophysical neutrinos

Neutrinos traverse different electron column depths

Not to scale

$$V_{e\beta} = V_{e\beta}^{\oplus}$$

Moon and Sun:

Treated as point sources of electrons

 $V_{e\beta} = V_{e\beta}^{\oplus} + V_{e\beta}^{\text{Moon}} + V_{e\beta}^{\odot}$

Potential:

$$V_{e\beta} \propto \frac{1}{r} e^{-m'_{e\beta}r}$$

Potential:

Moon $(10^{49} e)$

Earth $(10^{51}e)$

Milky Way $(10^{67}e)$

Bonus: Measuring the inelasticity $\langle y \rangle$

► Inelasticity in CC ν_{μ} interaction $\nu_{\mu} + N \rightarrow \mu + X$: $E_X = y E_{\nu}$ and $E_{\mu} = (1-y) E_{\nu} \Rightarrow y = (1 + E_{\mu}/E_X)^{-1}$

► The value of *y* follows a distribution $d\sigma/dy$

In a HESE starting track:

$$E_X = E_{sh}$$
 (energy of shower)
 $E_{\mu} = E_{tr}$ (energy of track)
 $y = (1 + E_{tr}/E_{sh})^{-1}$

► New IceCube analysis:

- ► 5 years of starting-track data (2650 tracks)
- Machine learning separates shower from track
- Different *y* distributions for *v* and \overline{v}

IceCube, PRD 2019

Bonus: Measuring the inelasticity $\langle y \rangle$

► Inelasticity in CC ν_{μ} interaction $\nu_{\mu} + N \rightarrow \mu + X$: $E_X = y E_{\nu}$ and $E_{\mu} = (1-y) E_{\nu} \Rightarrow y = (1 + E_{\mu}/E_X)$

► The value of *y* follows a distribution $d\sigma/dy$

► In a HESE starting track: $E_X = E_{sh}$ (energy of shower) $E_\mu = E_{tr}$ (energy of track) $y = (1 + E_{tr}/E_{sh})^{-1}$

► New IceCube analysis:

- ► 5 years of starting-track data (2650 tracks)
- Machine learning separates shower from track
- Different *y* distributions for v and \overline{v}

IceCube, PRD 2019

New physics in timing — TeV–PeV

Multiple secret vv scatterings may delay the arrival of neutrinos from a transient

See also: Alcock & Hatchett, ApJ 1978

New physics in timing — TeV–PeV

See also: Alcock & Hatchett, ApJ 1978

Neutrino zenith angle distribution

Peeking inside a proton

A feel for the in-Earth attenuation

Earth matter density

(Preliminary Reference Earth Model)

Neutrino-nucleon cross section

A feel for the in-Earth attenuation

What goes into the (likelihood) mix?

- Inside each energy bin, we freely vary
 - ► N_{ast} (showers from astrophysical neutrinos)
 - ▶ N_{atm} (showers from atmospheric neutrinos)
 - γ (astrophysical spectral index)
 - $\sigma_{\rm CC}$ (neutrino-nucleon charged-current cross section)
- ▶ For each combination, we generate the angular and energy shower spectrum...
- ... and compare it to the observed HESE spectrum via a likelihood
- Maximum likelihood yields σ_{CC} (marginalized over nuisance parameters)
- ▶ Bins are independent of each other there are no (significant) cross-bin correlations

What goes into the (likelihood) mix?

- Inside each energy bin, we freely vary
 N_{ast} (showers from astrophysical neutrinos)
 N_{atm} (showers from atmospheric neutrinos)
 γ (astrophysical spectral index)
 - $\sigma_{\rm CC}$ (neutrino-nucleon charged-current cross section)

▶ For each combination, we generate the angular and energy shower spectrum...

- ... and compare it to the observed HESE spectrum via a likelihood
- Maximum likelihood yields σ_{cc} (marginalized over nuisance parameters)
- ▶ Bins are independent of each other there are no (significant) cross-bin correlations

Including detector resolution (10% in energy, 15° in direction)

Marginalized cross section in each bin

TABLE I. Neutrino-nucleon charged-current inclusive cross sections, averaged between neutrinos ($\sigma_{\nu N}^{CC}$) and antineutrinos ($\sigma_{\bar{\nu}N}^{CC}$), extracted from 6 years of IceCube HESE showers. To obtain these results, we fixed $\sigma_{\bar{\nu}N}^{CC} = \langle \sigma_{\bar{\nu}N}^{CC} / \sigma_{\nu N}^{CC} \rangle \cdot$ $\sigma_{\nu N}^{CC}$ — where $\langle \sigma_{\bar{\nu}N}^{CC} / \sigma_{\nu N}^{CC} \rangle$ is the average ratio of $\bar{\nu}$ to ν cross sections calculated using the standard prediction from Ref. [60] — and $\sigma_{\nu N}^{NC} = \sigma_{\nu N}^{CC}/3$, $\sigma_{\bar{\nu}N}^{NC} = \sigma_{\bar{\nu}N}^{CC}/3$. Uncertainties are statistical plus systematic, added in quadrature.

E_{ν} [TeV]	$\langle E_{\nu} \rangle [\text{TeV}]$	$\langle \sigma^{\rm CC}_{\bar\nu N}/\sigma^{\rm CC}_{\nu N}\rangle$	$\log_{10}[\frac{1}{2}(\sigma_{\nu N}^{\rm CC} + \sigma_{\bar{\nu}N}^{\rm CC})/{\rm cm}^2]$
18 - 50	32	0.752	-34.35 ± 0.53
50 - 100	75	0.825	-33.80 ± 0.67
100 - 400	250	0.888	-33.84 ± 0.67
400 - 2004	1202	0.957	$> -33.21 \ (1\sigma)$

MB & A. Connolly, 1711.11043

Energy and angular shower spectra

Rate from all flavors, CC + NC:

$$\frac{d^2 N_{\rm sh}}{dE_{\rm sh}d\cos\theta_z} = \frac{d^2 N_{\rm sh,e}^{\rm CC}}{dE_{\rm sh}d\cos\theta_z} + \frac{Br_{\tau\to\rm sh}}{e} \frac{d^2 N_{\rm sh,\tau}^{\rm CC}}{dE_{\rm sh}d\cos\theta_z} + \sum_{l=e,\mu,\tau} \frac{d^2 N_{\rm sh,l}^{\rm NC}}{dE_{\rm sh}d\cos\theta_z}$$

Contribution from one flavor CC:

$$\frac{d^2 N_{\mathrm{sh},l}^{\mathrm{CC}}}{dE_{\mathrm{sh}}d\cos\theta_z} (E_{\mathrm{sh}},\cos\theta_z) \simeq -2\pi\rho_{\mathrm{ice}}N_A VT \left\{ \Phi_l(E_\nu)\sigma_{\nu N}^{\mathrm{CC}}(E_\nu)e^{-\tau_{\nu N}(E_\nu,\theta_z)} + \Phi_{\bar{l}}(E_\nu)\sigma_{\bar{\nu}N}^{\mathrm{CC}}(E_\nu)e^{-\tau_{\bar{\nu}N}(E_\nu,\theta_z)} \right\} \Big|_{E_\nu = E_{\mathrm{sh}}/f_{l,\mathrm{CC}}}$$

Conversion between shower energy and neutrino energy:

$$f_{l,t} \equiv \frac{E_{\rm sh}}{E_{\nu}} \simeq \begin{cases} 1 & \text{for } l = e \text{ and } t = CC\\ [\langle y \rangle + 0.7 (1 - \langle y \rangle)] \simeq 0.8 & \text{for } l = \tau \text{ and } t = CC\\ \langle y \rangle \simeq 0.25 & \text{for } l = e, \mu, \tau \text{ and } t = NC \end{cases}$$

MB & A. Connolly, 1711.11043

Detector resolution

Number of contained showers:

$$\frac{d^2 N_{\rm sh}}{dE_{\rm dep}d\cos\theta_z} = \int dE_{\rm sh} \int d\cos\theta'_z \frac{d^2 N_{\rm sh}}{dE_{\rm sh}d\cos\theta'_z} R_E(E_{\rm sh}, E_{\rm dep}, \sigma_E(E_{\rm sh})) R_\theta(\cos\theta'_z, \cos\theta_z, \sigma_{\cos\theta_z})$$

Energy resolution: [Palomares-Ruiz, Vincent, Mena PRD 2015; Vincent, Palomares-Ruiz, Mena PRD 2016; MB, Beacom. Murase, PRD 2016]

$$R_E(E_{\rm sh}, E_{\rm dep}, \sigma_E(E_{\rm sh})) = \frac{1}{\sqrt{2\pi\sigma_E^2(E_{\rm sh})}} \exp\left[-\frac{(E_{\rm sh} - E_{\rm dep})^2}{2\sigma_E^2(E_{\rm sh})}\right] \quad \text{with} \quad \sigma_E(E_{\rm sh}) = 0.1E_{\rm sh}$$

Angular resolution:

$$R_{\theta}(\cos\theta'_{z},\cos\theta_{z},\sigma_{\cos\theta_{z}}) = \frac{1}{\sqrt{2\pi\sigma_{\cos\theta_{z}}^{2}}} \exp\left[-\frac{(\cos\theta'_{z}-\cos\theta_{z})^{2}}{2\sigma_{\cos\theta_{z}}^{2}}\right]$$

with $\sigma_{\cos\theta_{z}} \equiv \frac{1}{2}\left[\left|\cos(\theta_{z}+\sigma_{\theta_{z}})-\cos\theta_{z}\right| + \left|\cos(\theta_{z}-\sigma_{\theta_{z}})-\cos\theta_{z}\right|\right]$ and $\sigma_{\theta_{z}} = 15^{\circ}$
MB & A. Connolly, 1711.11043

Likelihood

In an energy bin containing $N_{\rm sh}^{\rm obs}$ observed showers, the likelihood is

Each energy bin is independent
$$\mathcal{L} = rac{e^{-(N_{
m sh}^{
m atm} + N_{
m sh}^{
m ast})}{N_{
m sh}^{
m obs}!}\prod_{i=1}^{N_{
m sh}^{
m obs}}\mathcal{L}_i$$

_ _ _ _ _ _ _ _ _ _ _ _ _

Partial likelihood, *i.e.*, relative probability of the *i*-th shower being from an atmospheric neutrino or an astrophysical neutrino:

$$\mathcal{P}_{i}^{atm} = \left(\int_{E_{dep}}^{E_{dep}^{max}} dE_{dep} \int_{-1}^{1} d\cos\theta_{z} \frac{d^{2}N_{sh}^{atm}}{dE_{dep}d\cos\theta_{z}} \right)^{-1} \left(\frac{d^{2}N_{sh}^{atm}}{dE_{dep}d\cos\theta_{z}} \Big|_{E_{dep,i},\cos\theta_{z,i}} \right) \qquad PDF \text{ for this shower to be made by an atmospheric } v$$

$$\mathcal{P}_{i}^{ast} = \left(\int_{E_{dep}}^{E_{dep}^{max}} dE_{dep} \int_{-1}^{1} d\cos\theta_{z} \frac{d^{2}N_{sh}^{ast}}{dE_{dep}d\cos\theta_{z}} \right)^{-1} \left(\frac{d^{2}N_{sh}^{ast}}{dE_{dep}d\cos\theta_{z}} \Big|_{E_{dep,i},\cos\theta_{z,i}} \right) \qquad PDF \text{ for this shower to be made by an atmospheric } v$$

$$\mathcal{P}_{i}^{ast} = \left(\int_{E_{dep}^{max}}^{E_{dep}} dE_{dep} \int_{-1}^{1} d\cos\theta_{z} \frac{d^{2}N_{sh}^{ast}}{dE_{dep}d\cos\theta_{z}} \right)^{-1} \left(\frac{d^{2}N_{sh}^{ast}}{dE_{dep}d\cos\theta_{z}} \Big|_{E_{dep,i},\cos\theta_{z,i}} \right) \qquad PDF \text{ for this shower to be made by an astrophysical } v$$

$$\mathcal{M}B \& A. \text{ Connolly, 1711.11043}$$
See also: Palomares-Ruiz, Vincent, Mena *PRD* 2015; Vincent, Palomares-Ruiz, Mena *PRD* 2016 Depends on γ and σ_{vN}

The fine print

- ▶ High-energy v's: astrophysical (isotropic) + atmospheric (anisotropic)
 ⇒ We take into account the shape of the atmospheric contribution
- The shape of the astrophysical ν energy spectrum is still uncertain \mapsto We take a $E^{-\gamma}$ spectrum in *narrow* energy bins
- ► NC showers are sub-dominant to CC showers, but they are indistinguishable → Following Standard-Model predictions, we take $\sigma_{\rm NC} = \sigma_{\rm CC}/3$
- ► IceCube does not **distinguish** ν from $\overline{\nu}$, and their cross-sections are different \mapsto We assume equal fluxes, expected from production via pp collisions \mapsto We assume the avg. ratio $\langle \sigma_{\overline{\nu}N} / \sigma_{\nu N} \rangle$ in each bin known, from SM predictions
- ► The flavor composition of astrophysical neutrinos is still uncertain
 → We assume equal flux of each flavor, compatible with theory and observations

Using through-going muons instead

- ► Use ~10⁴ through-going muons
- Measured: dE_{μ}/dx
- Inferred: $E_{\mu} \approx dE_{\mu}/dx$
- From simulations (uncertain): most likely E_v given E_µ
- ► Fit the ratio σ_{obs}/σ_{SM} 1.30^{+0.21}_{-0.19}(stat.)^{+0.39}_{-0.43}(syst.)
- All events grouped in a single energy bin 6–980 TeV

Flavor composition – a few source choices

Flavor composition – a few source choices

Side note: Improving flavor-tagging using echoes

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Side note: Improving flavor-tagging using echoes

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Side note: Improving flavor-tagging using echoes

Late-time light (*echoes*) from muon decays and neutron captures can separate showers made by v_e and v_{τ} –

Hadronic vs. electromagnetic showers

Energy dependence of the flavor composition?

Different neutrino production channels accessible at different energies –

TP13: *p*γ model, target photons from electron-positron annihilation [Hümmer+, Astropart. Phys. 2010]
 Will be difficult to resolve [Kashti, Waxman, PRL 2005; Lipari, Lusignoli, Meloni, PRD 2007]

... Observable in IceCube-Gen2?

Flavor content of neutrino mass eigenstates

Flavor content for every allowed combination of mixing parameters –

Earth

Earth

Find the value of **D** so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; andAny flavor ratios at the sources

MB, Beacom, Murase, PRD 2017

Baerwald, MB, Winter, JCAP 2012

(Assume equal lifetimes of $\nu_{2'} \nu_{3}$)

Fraction of ν_2 , ν_3 remaining at Earth

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; andAny flavor ratios at the sources

(Assume equal lifetimes of $\nu_{2'}$, ν_{3})

MB, Beacom, Murase, *PRD* 2017 Baerwald, **MB**, Winter, *JCAP* 2012

Fraction of ν_2 , ν_3 remaining at Earth

MB, Beacom, Murase, PRD 2017

Baerwald, MB, Winter, JCAP 2012

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; and
Any flavor ratios at the sources

(Assume equal lifetimes of ν_2, ν_3)

Fraction of v_2 , v_3 remaining at Earth

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; and
Any flavor ratios at the sources

(Assume equal lifetimes of ν_2, ν_3)

MB, Beacom, Murase, *PRD* 2017 Baerwald, **MB**, Winter, *JCAP* 2012

Fraction of ν_2 , ν_3 remaining at Earth

MB, Beacom, Murase, PRD 2017

Baerwald, MB, Winter, JCAP 2012

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; and
Any flavor ratios at the sources

(Assume equal lifetimes of $\nu_{2'}$, ν_{3})

Fraction of ν_2 , ν_3 remaining at Earth

MB, Beacom, Murase, PRD 2017

Baerwald, MB, Winter, JCAP 2012

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; and
Any flavor ratios at the sources

(Assume equal lifetimes of $\nu_{2'}, \nu_{3}$)

Fraction of v_2 , v_3 remaining at Earth

Find the value of *D* so that decay is complete, *i.e.*, $f_{\alpha,\oplus} = |U_{\alpha 1}|^2$, for

Any value of mixing parameters; and
Any flavor ratios at the sources

(Assume equal lifetimes of ν_2, ν_3)

Two classes of new physics

- ▶ Neutrinos propagate as an incoherent mix of ν_1 , ν_2 , ν_3
- Each one has a different flavor content:

- Flavor ratios at Earth are the result of their combination
- ► New physics may:
 - Only reweigh the proportion of each v_i reaching Earth (*e.g.*, v decay)
 - ▶ Redefine the propagation states (*e.g.*, Lorentz-invariance violation)

Two classes of new physics

- ▶ Neutrinos propagate as an incoherent mix of ν_1 , ν_2 , ν_3
- Each one has a different flavor content:

Flavor ratios at Earth are the result of their combination

New physics may:

- Only reweigh the proportion of each v_i reaching Earth (*e.g.*, v decay)
- ▶ Redefine the propagation states (*e.g.*, Lorentz-invariance violation)

Current limits on the Z' MeV–GeV masses

Sub-eV masses

Connecting flavor-ratio predictions to experiment

Integrate potential in redshift, weighed by source number density \rightarrow Assume star formation rate

$$\langle V_{e\beta}^{\cos} \rangle \propto \int dz \; \rho_{\rm SFR}(z) \cdot \frac{dV_{\rm c}}{dz} \cdot V_{e\beta}^{\cos}(z)$$
 Density of cosmological e grows with z

Convolve flavor ratios with observed neutrino energy spectrum \rightarrow Either $E^{-2.50}$ (combined analysis) or $E^{-2.13}$ (through-going muons)

$$\langle \Phi_{\alpha} \rangle \propto \int dE_{\nu} f_{\alpha,\oplus}(E_{\nu}) E_{\nu}^{-\gamma} \Rightarrow \langle f_{\alpha,\oplus} \rangle \equiv \frac{\langle \Phi_{\alpha} \rangle}{\sum_{\beta=e,\mu,\tau} \langle \Phi_{\beta} \rangle}$$

Energy-averaged flux Energy-averaged flavor ratios

Resonance due to the L_e - L_μ symmetry

Resonance due to the L_e - L_{μ} symmetry (*cont.*)

Looking for the sources

Three Strategies to Reveal Sources Using TeV–PeV ν

Gamma-ray bursts and blazars – *not* dominant Gamma-ray bursts Blazars

Gamma-ray bursts and blazars – *not* dominant Gamma-ray bursts Blazars

... but we have seen *one* blazar neutrino flare!

Recent news: The starburst Seyfert galaxy NGC 1068 is also a potential neutrino source candidate (1908.05993)

Blazar TXS 0506+056:

Joint modeling of the two periods is challenging; see ICRC 2019 talk by Walter Winter

Source discovery potential: today and in the future

Accounts for the observed diffuse v flux (lower/upper edge: rapid/no redshift evolution)

Ackermann, MB et al., Astro2020 Survey (1903.04333) – See also: Silvestri & Barwick, PRD 2010; Murase & Waxman, PRD 2016