Modelling supermassive black holes on event horizon scales

Multimessengers, Prague

Jordy Davelaar On behalve of the Event Horizon Telescope Collaboration

erc European Council Event Horizon Telescope Radboud Universiteit

FBI role in probe now under scrutin

te and the second secon

GOP has clear focus on Allred

The path towards event horizon imaging

Radboud Universiteit

Event Horizon Telescope

The first observing run

Five observing days in a ten day window

8 Telescopes on 6 sites

First EHT run including ALMA

5 Pb of data recorded

Exquisite weather conditions

Detections on all baselines

Event Horizon Telescope

Multi-Wavelength Coverage: M87 in April 2017

The earth as a telescope

A shadow in disguise

7

Event Horizon Telescope

Team 1

Region: The Americas (SAO, UoA, U.Concepcion)

Team 2

Region: Global (MIT Haystack, Radboud U, NAOJ)

50 μas

Each team <u>blindly</u> reconstructed images **Goal:** Assess human bias

The First EHT Images of M87 July 24, 2018

Event Horizon Telescope

Different methods, same answer

Event Horizon Telescope

The Power of ALMA

Credit: O. Porth, L.Rezzolla

Event Horizon Telescope

General Relativistic Ray Tracing 101

Event Horizon Telescope

Modeling accreting black holes: "the standard model"

3D GRMHD density regions:

Red: low density, high magnetization

Blue: high density, low magnetization

Accretion flow: two-temperature plasma $T_{electron} \ll T_{proton}$

¹³ Moscibrodzka et al. (2016, A&A)

Event Horizon Telescope

Simulation Library: 43 GRMHD numerical simulations

- 3D GRMHD simulations from: BHAC, iharm3d, KORAL, H-AMR
- Two accretion states according to accumulated magnetic flux on horizon:
- SANE (Standard and Normal Evolution)
- MAD (Magnetically Arrested Disk)
- BH spin parameter:
- SANE: -0.94, -0.5, 0, 0.5, 0.75, 0.88, 0.94, 0.97, 0.98
- MAD: -0.94, -0.5, 0, 0.5, 0.75, 0.94

Event Horizon Telescope

Image Library: > 60,000 images

- 1.3mm modeled images from: ipole, RAPTOR, BHOSS
- Observer inclination angles: i=12, 17, 22, 158, 163, 168 deg
- Thermal electron distrbution in full domain: $R_{high}=(1, 10, 20, 40, 80, 160),$

Event Horizon Telescope \bigcirc

Overview of image library: Time-averaged Images (SANE)

black hole rotational axis

*the forward jet is pointed to the right in all panels

Event Horizon Telescope

Ring Asymmetry and Black Hole Spin

G. Wong, B. Prather, C. Gammie (Illinois)

Event Horizon Telescope

Model constraints

Four constraints

- 1. Average Imaging Score
- 2. Radiative efficiency must be small
- 3. Must not overproduce X-rays
- 4. Must produce jet power > minimal jet power = 10⁴² erg/sec

Constraint Summary

- Applied Average Imaging Score (AIS), consistency of radiative equilibrium, max X-ray luminosity, and minimum jet power
- SANE models that pass; a = -0.94 and a = 0.94 models with large R_{high}
- MAD models that pass, a = ±0.5, and a=0.94, models with large R_{high}

SANE

MAD

$a_{*}{}^{2}$	$R_{\mathrm{high}}{}^3$	AIS^4	ϵ^5	$L_{\rm X}{}^6$	$P_{\rm jet}{}^7$			$flux^1$	a_{*}^{2}	$R_{\mathrm{high}}{}^3$	AIS^4	ϵ^5	$L_{\rm X}{}^6$	$P_{\rm jet}$
-0.94	1	Fail	Pass	Pass	Pass	Fail		MAD	-0.94	1	Fail	Fail	Pass	Pass
-0.94	10	Pass	Pass	Pass	Pass	Pass		MAD	-0.94	10	Fail	Pass	Pass	Pass
-0.94	20	Pass	Pass	Pass	Pass	Pass		MAD	-0.94	20	Fail	Pass	Pass	Pass
-0.94	40	Pass	Pass	Pass	Pass	Pass		MAD	-0.94	40	Fail	Pass	Pass	Pass
-0.94	80	Pass	Pass	Pass	Pass	Pass		MAD	-0.94	80	Fail	Pass	Pass	Pass
-0.94	160	Fail	Pass	Pass	Pass	Fail		MAD	-0.94	160	Fail	Pass	Pass	Pass
-0.5	1	Pass	Pass	Fail	Fail	Fail		MAD	-0.5	1	Pass	Fail	Pass	Fail
-0.5	10	Pass	Pass	Fail	Fail	Fail		MAD	-0.5	10	Pass	Pass	Pass	Fail
-0.5	20	Pass	Pass	Pass	Fail	Fail		MAD	-0.5	20	Pass	Pass	Pass	Pass
-0.5	40	Pass	Pass	Pass	Fail	Fail		MAD	-0.5	40	Pass	Pass	Pass	Pass
-0.5	80	Fail	Pass	Pass	Fail	Fail		MAD	-0.5	80	Pass	Pass	Pass	Pass
-0.5	160	Pass	Pass	Pass	Fail	Fail		MAD	-0.5	160	Pass	Pass	Pass	Pass
0	1	Pass	Pass	Pass	Fail	Fail		MAD	0	1	Pass	Fail	Pass	Fail
0	10	Pass	Pass	Pass	Fail	Fail		MAD	0	10	Pass	Pass	Pass	Fail
0	20	Pass	Pass	Fail	Fail	Fail		MAD	0	20	Pass	Pass	Pass	Fail
0	40	Pass	Pass	Pass	Fail	Fail		MAD	0	40	Pass	Pass	Pass	Fail
0	80	Pass	Pass	Pass	Fail	Fail		MAD	0	80	Pass	Pass	Pass	Fail
0	160	Pass	Pass	Pass	Fail	Fail		MAD	0	160	Pass	Pass	Pass	Fail
+0.5	1	Pass	Pass	Pass	Fail	Fail		MAD	+0.5	1	Pass	Fail	Pass	Fail
+0.5	10	Pass	Pass	Pass	Fail	Fail		MAD	+0.5	10	Pass	Pass	Pass	Pass
+0.5	20	Pass	Pass	Pass	Fail	Fail		MAD	+0.5	20	Pass	Pass	Pass	Pass
+0.5	40	Pass	Pass	Pass	Fail	Fail		MAD	+0.5	40	Pass	Pass	Pass	Pass
+0.5	80	Pass	Pass	Pass	Fail	Fail		MAD	+0.5	80	Pass	Pass	Pass	Pass
+0.5	160	Pass	Pass	Pass	Fail	Fail		MAD	+0.5	160	Pass	Pass	Pass	Pass
+0.94	1	Pass	Fail	Pass	Fail	Fail		MAD	+0.94	1	Pass	Fail	Fail	Pass
+0.94	10	Pass	Fail	Pass	Fail	Fail		MAD	+0.94	10	Pass	Fail	Pass	Pass
+0.94	20	Pass	Pass	Pass	Fail	Fail		MAD	+0.94	20	Pass	Pass	Pass	Pass
+0.94	40	Pass	Pass	Pass	Fail	Fail		MAD	+0.94	40	Pass	Pass	Pass	Pass
+0.94	80	Pass	Pass	Pass	Pass	Pass		MAD	+0.94	80	Pass	Pass	Pass	Pass
+0.94	160	Pass	Pass	Pass	Pass	Pass	in	MAD	+0.94	160	Pass	Pass	Pass	Pass

Event Horizon Telescope

The mass of M87*

- Using D = 16.8 +/- 0.7 Mpc
- $M = 6.5 + / 0.7 \times 10^9 Msun$
- Three methods in excellent agreement
- Excellent agreement with recent stellar dynamics mass estimate (Gebhardt+2011)

Event Horizon Telescope

Towards tests of GR: image circularity

- At low inclination of M87, shadow shape should be extremely circular for all values of black hole spin (e.g. Chan+2013)
- From reconstructed images, we measure an emission region that is circular to within ~4:3 in axis ratio
- Given limited resolution, result is consistent with expectations from GRMHD models of M87
- Future: get to circularity of shadow and photon ring

The future of EHT

- 1. EHT is being upgraded to include the 345 GHz band.
- 2. Next science goals: imaging SgrA*, polarization, time variability
- 3. EHT the next generation: new telescopes (NOEMA, Kitt Peak, GLT) + space-VLBI (to boldly go..., see white papers for NSF and ESA)

Future of the EHT: space VLBI, razor sharp shadow images

Martin-Neira, V.Kudriashov (ESA)

ESA 2050 White paper, THEZA, Gurvits et al. 2019 arXiv:1908.10767 **Radboud Universiteit** 24

F. Roelofs et al. (2018, subm.)

How to improve theory?

- 1. Highly resolved GRMHD simulations
- 2. Non-thermal electron distribution functions
- Davelaar, Olivares, Porth, et al. 2019, A&A Olivares, Porth, Davelaar, et al. 2019, A&A

Cartesian AMR simulations

High resolution cartesian simulations to avoid numerical dificulties at the polar region

Includes adaptive mesh refinement

70 million grid cells

Simulation performed with **BHAC** (Porth et al. 2017)

Olivares, Porth, Davelaar et al. 2019, A&A Davelaar, Olivares, Porth et al. 2019, A&A **Radboud Universiteit**

A skeleton in the closet

Currently models only consider electrons in a thermal distribution function. but...

Mean free path of electron > 10⁸ radius of the event horizon Plasma is collisionless \rightarrow Kinetic effects important \rightarrow

- Chael et al. 2018 and Ryan et al. 2018; SED modeling of M87*, thermal electrons only
- Fit the radio and X-ray, but an excess at NIR
 - Powerlaw in observations suggest electron acceleration \rightarrow

Modeling accreting black holes: "the standard model"

3D GRMHD density regions:

Red: low density, high magnetization

Blue: high density, low magnetization

Accretion flow: two-temperature plasma $T_{electron} \ll T_{proton}$

Jet: single-temperature plasma: $T_{electron} \sim T_{proton}$

Electrons are partially accelerated?

kappa-distribution

$$\frac{dn_{\rm e}}{d\gamma} = N\gamma\sqrt{\gamma^2 - 1}\left(1 + \frac{\gamma - 1}{\kappa w}\right)$$
$$n = \kappa - 1$$

Radboud Universiteit

Davelaar, Olivares, Porth et al. 2019, A&A

Reconnection as the source of electron acccelaration

Werner et al. 2017 Ball et al. 2018 Davelaar et al. 2020 in prep

t=0.011 [L/c]

SED fitting of M 87*

Observational data: Hada et al. 2011 Doeleman et al. 2012 Prieto et al. 2015 Walker et al. 2018 Kim et al. 2018

Images of M87*

- non-thermal models are optically lacksquarethinner
- Could exclude some models ulletbased on lower jet powers?
- No direct comparison with EHT ulletdate done yet (work in progress...)

Modeling accreting black holes: "the standard model"

3D GRMHD density regions:

Red: low density, high magnetization

Blue: high density, low magnetization

Accretion flow: two-temperature plasma $T_{electron} \ll T_{proton}$

Jet: single-temperature plasma: $T_{electron} \sim T_{proton}$

> **Electrons are** partially accelerated?

in plasmoid unstable current sheets? **In shear layers?**

$$\frac{dn_{\rm e}}{d\gamma} = N\gamma\sqrt{\gamma^2 - 1}\left(1 + \frac{\gamma - \gamma}{\kappa w}\right)$$

Radboud Universiteit

Davelaar, Olivares, Porth et al. 2019, A&A

Highly resolved GRMHD

Davelaar, Ripperda, Biachini et al. in prep 34 Ripperda, Biachini, Davelaar et al. in prep

Work in progress

density

Kelvin-Helmholz waves create turbulence in shear layer of the jet, reconnection and mass loading?

Summary

EHT

- First image of the shadow of a black hole
- Mass around 6.5 +/- 0.7 x 10⁹ Msun
- Asymmetry constrains rotation direction

Non-thermal modeling

- law seen in the SED of M87
- comparison with EHT observation in progress Future work
 - Effect on polarisation

 - more sophisticated electron injection criterion

 Performed high resolution Cartesian GRMHD simulation Trans-relativistic reconnection can explain the NIR power

Resistive GRMHD to identify reconnection events

