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. Pulsars and pulsar timing



What are pulsars?

Neutron stars are the remnants of extremely
massive stars. Towards the end of their lives
they explode as Supernovae:

spin precisely!




Pulsar timing

- Once we find a pulsar, it is interesting to find out how regularly the pulses arrive at the Earth.

Pulsar timing measures pulsar arrival time at
the telescope (TOA):

Residual



Pulsar timing

The trends in the residuals will tell us what parameter(s) needs correction: generally, all of them!
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The P-Pdot diagram and binary pulsars

10-10

> 3000 pulsars!

- Periods:; 1.396 ms - 23.5 s 107
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- The spin period and the period
derivative tell us a lot about the pulsar
— its age, magnetic field, spin-down

energy, etc. 1074
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- Many interesting trends appear in the

P- Pdot diagram:

o  Like the Crab, youngest pulsars
tend to be associated with SN 10-20

©  The fastest pulsars are not the
youngest, but the oldest,

©  Most of these are in binary 10—21203 e e I ——
2/5;323 where they have been Period (s)




The P-Pdot diagram and binary pulsars

10—10

- 10% are in binary systems

- Orbital period range: 95 min to > 200 107+
yr. The companions are:
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* One pulsar (JO337+1715) in a stellar 00 100 100 10 10
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The P-Pdot diagram and binary pulsars

primary secondary

\ / binary disrupts

Woomph!

binary survives
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Timing pulsars in binary systems
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Figure: Scott Ransom

In a binary pulsar, having a clock in the
system allows us to measure the range
relative to the center of mass of the binary.

The 5 Keplerian orbital parameters derived
from pulsar timing are thousands of times
more precise than derived from Doppler
measurements — with the same
observational data!

This feature is unique to pulsars, and is the
fundamental reason why they are superior
astrophysical tools.

This is the reason why | am giving this talk
here!

Plus: IT'S A CLEAN EXPERIMENT!



An example relevant for this talk: PSR J1/738+0333

- Number of rotations between 52872.01692 and 55813.95899 (SSB): 43 449 485 656 = 0.

« Spin period at reference epoch: 0.005 850 095 859 775 683 + 0.000 000 000 000 000 005 s
» Orbital period: 8" 30m 53.919 926 4 + 0.000 000 3 s

- Semi-major axis of the pulsar’s orbit, projected along the line of sight: 102 957 453 + 6 m.

« Eccentricity: (3 = 1) x 10-7. !

* Proper motion: 7.037 = 0.005 mas yr-1, 5.073 = 0.012 mas yr-1, parallax: 0.68 + 0.05 mas.

See Freire et al. 2012, MNRAS, 423, 3328.



. Binary pulsars and GW emission



The first binary pulsar - 1974

“Here was a system that featured, in addition to
significant post-Newtonian gravitational effects, highly
relativistic gravitational fields associated with the
pulsar (@and possibly its companion) and the possibility
of the emission of gravitational radiation by the
binary system.” (Clifford Will, TEGP 2018)
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Double neutron star system: PSR B1913+13

The Sun

4 light seconds

(1.2 million km)



PSR B1913+16

D]
For most binary pulsars, all we have are
the Keplerian parameters and all we can
derive is the mass function: o)
N
. (M, sin i)’ Ar? x°
f(Mp7MCa l) = 3 — __2
(M, + M) Ty Pg ~
GM,,
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PSR B1913+16

IF a binary pulsar is compact and
eccentric — which B1913+16 certainly
is — the timing precision allows the
measurement of several relativistic
effects:

- The advance of periastron

- The Einstein delay

1974



PSR B1913+16

Assuming GR, to 1 PN:

M= M,+ M, %
B 27

n, = P_b )
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PSR B1913+16

1 1 1 T 1 T
Assuming GR, to 1 PN:
M = Mp + M, < _
27
My = P : .
b ol ® )
5/3 ©
: L 2/3 2
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b 3
S

* 3 equations for 3 unknowns!
Precise masses can be derived!

- This was at the time the most
precise measurement of any mass
outside the solar system.
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PSR B1913+16
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A third relativistic effect soon

became measurable — the orbital

decay due to GW emission! o[ )
N

Assuming GR, LO PN [(v/c)3]:
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Prediction: the orbital period should
decrease at a rate of —2.40247 x
10-12 s/s (or 75 us per year!)

0.5

Effect not detectable in Solar
System.
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PSR B1913+16

- Rate is —2.4085(52) x 10-12 s/s.
Agreement with GR is perfect!

«  GR gives a self-consistent estimate
of the component masses!
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PSR B1913+16
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Weisberg, J.M., and Taylor, J.H., “The Relativistic Binary
Pulsar B1913+167”, in Bailes, M., Nice, D.J., and
Thorsett, S.E., eds., Radio Pulsars:. Proceedings of a
Meeting held at Mediterranean Agronomic Institute of
Chania, Crete, Greece, 26 — 29 August 2002, ASP
Conference Proceedings, vol. 302, (Astronomical
Society of the Pacific, San Francisco, 2003).



Nobel Prize in Physics, 1993

For the discovery of the binary pulsar,
Russel Hulse and Joseph Taylor were
awarded the Nobel Prize in Physics, 1993




Gravitational Waves Exist!

“(...) the observation of the orbital decay in the TOAs of a binary pulsar is a direct effect of the
retarded propagation (at the speed of light, and with a quadrupolar structure) of the gravitational
interaction between the companion and the pulsar. In that sense, the Hulse-Taylor pulsar provides a

direct observational proof that gravity propagates at the speed of light, and has a quadrupolar
structure.”

Damour, 2014, Classical and Quantum Gravity, Volume 32, Issue 12, article id. 124009 (2015).
He adds:

“The latter point is confirmed by the theoretical computation of the orbital decay in alternative

theories of gravity where the non purely quadrupolar (i.e. non purely spin 2) structure of the
gravitational interaction generically induces drastic changes (....)"



The Double Pulsar”;: PSR JO7/37-3039

Discovered in the Galactic anti-center survey with
Parkes (Burgay et al. 2003, Nature, 426, 531)
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The Double

Pulsar”:
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Spin periods : 23 ms, 2.8 s
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DNS JO737-3039

Nature sometimes is extremely P
generous! In this case, for many ,
reasons... /

#1: Orbital period of 2h 27m_ it is \
(was) the most relativistic double !
neutron star system known! \

~ -

\‘.‘_-—”_/

B1913+16

The Sun

J0737-3039



DNS JO737-3039

oo | L #2: this super-relativistic system has a very high
— inclination. Shapiro delay is well measured,
s providing two extra mass constraints!
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DNS JO737-3039

*  #3: The second NS in the system (PSR J0737-3039B) was detectable as a radio pulsar!
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DNS JO737-3039

*  GR passes all 4 tests with flying
colors!

- There is a fifth test, from geodetic
precession of PSR J0737-3039B
(Breton et al. 2008, Science), which
we mention later.

Mass of Pulsar B (M)

2.0 :
1.5§

r
1.0 §

i =
0.5 S

].33;6 1.338  1.340

0.0 0.5 1.0 1.5 2.0
Mass of Pulsar A (M)

0.0

Kramer et al. 2006, Science, 314, 97



DNS JO737-3039

in prep. |
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DNS JO737-3039
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The double pulsar and TeVeS

These results are already enough to exclude TeVeS - or at least that it yields MOND
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3. Tests of alternative theories of gravity,
experiments™ on the nature ot gravitational waves

*These really are experiments: Nature changes the experimental setup, i.e., the
orbit of the binary and the nature and masses of the components.
- our role is to make the measurements



Could Einstein still be wrong?

Many alternative theories of gravity predict violation of the strong equivalence principle (SEP).
Consequences:
1. Dipolar gravitational wave (DGW) emission (tight orbits, 1.5 PN, or 1/c3)

GMyp g 1+e%/2
3 g+ 1(1—-e?)?

Plb) =—2nn, (o, — aWD)z

2. Orbital polarization (Nordtvedt effect, for wide orbits AND PULSAR IN TRIPLE SYSTEM)

3. Variation of Newton’s gravitational constant G.

Detecting any of these effects would falsify GR!

The first two depend on difference of compactness between members of the binary. Therefore,
pulsar — white dwarf systems might show these effects, even if they are not detectable in the
double pulsar!



Pulsar — White dwarf systems

MAX-PLANCK-GESELLSCHAFT

FOI’ GR teStS W|th theSG SyStemS, primary secondary
mass measurements are absolutely
necessary.

runaway star

¢ /!
Furthermore, it is thought that these \ﬂ, / binary disrupts N ,
, . oomph! o
could be more massive, given the N young pulsar
much longer accretion episode! ¢ e
binary survives mildly recycled pulsar
So, we REALLY WANT TO young pulsar
MEASURE THEIR MASSES! i T aydes
secondary evolves ’ /
(Roche Lobe overflow)
. /7 high-mass system \ \'u ;,(,m[,/;,/
Measuring masses much more ~ - —= N
difficult since generally orbits are so e
circular! . l
low-mass system binary survives
millisecond pulsar - white dwarf binary double neutron star binary

Lorimer, D., Living Rev. Relativity 11 (2008), 8



PSR J0348+0432

- This is a pulsar with a spin period
of 39 ms discovered in a GBT
350-MHz drift-scan survey (Lynch
et al. 2013, Apd. 763, 81).

- It has a WD companion and (by
far) the shortest orbital period for
a pulsar-WD system: 2h 27 min.
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Once again, Nature comes to the rescue!

3800 4000 4200 4400 4600 4800
A (A)

An analysis of the spectrum
of the WD yields a mass of
0.172 £0.003 M




PSR J0348+0432

The same VLT observations also
determine the mass ratio!

Pulsar mass: (2.01 + 0.04) M}
(Antoniadis, Freire, Wex, Tauris et al. 2013,
Science, 340, n. 6131).

« Most massive NS with a precise mass
measurement!

* Prediction for orbital decay: —8.1 usyr™!

Radial Velocity (km s™)
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Credit: Luis Calcada, ESO. See video at:
http://www.eso.org/public/videos/eso1319a/



http://www.eso.org/public/videos/eso1319a/
http://www.eso.org/public/videos/eso1319a/

Constraints on the equation of state

Mass (Msun)
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Mass measurements have direct implications for the EOS of dense matter!

Figure by Norbert Wex. See http://www3.mpifr-bonn.mpg.de/staff/pfreire/NS_masses.html
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Orbital decay: as expected by GR!
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Constraints on DEF gravity
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4. Closing the “scalarization gap”



Constraints on spontaneous scalarization
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M. Shibata, K. Taniguchi, H. Okawa, and A. Buonanno, Phys. Rev. D 89, 084005 (2014)

- Stars can de-scalarize at the largest masses allowed by the EQOS.

- This implies that, if maximum NS mass is close to 2 solar masses, we can still have spontaneous
scalarization in between the masses of PSR J1738+0333 and PSR J0348+0432
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ABSTRACT

We report here the Einstein@Home discovery of PSR J1913+1102, a 27.3 ms pulsar found in data from the
ongoing Arecibo PALFA pulsar survey. The pulsar is in a 4.95 hr double neutron star (DNS) system with an
eccentricity of 0.089. From radio timing with the Arecibo 305 m telescope, we measure the rate of advance of
periastron to be w = 5.632(18)°yr~'. Assuming general relativity accurately models the orbital motion, this
corresponds to a total system mass of M, = 2.875(14) M., similar to the mass of the most massive DNS known
to date, B19134-16, but with a much smaller eccentricity. The small eccentricity indicates that the second-formed
neutron star (NS) (the companion of PSR J19134-1102) was born in a supernova with a very small associated kick
and mass loss. In that case, this companion is likely, by analogy with other systems, to be a light (~1.2 M) NS; the
system would then be highly asymmetric. A search for radio pulsations from the companion yielded no plausible
detections, so we cannot yet confirm this mass asymmetry. By the end of 2016, timing observations should permit
the detection of two additional post-Keplerian parameters: the Einstein delay (), which will enable precise mass
measurements and a verification of the possible mass asymmetry of the system, and the orbital decay due to the
emission of gravitational waves (B,), which will allow another test of the radiative properties of gravity. The latter
effect will cause the system to coalesce in ~0.5 Gyr.

Key words: binaries: general — gravitation — pulsars: general — pulsars: individual (PSR J1913+1102) —
stars: neutron
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New double neutron star system: PSR J1913+1102
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Most massive DNS ever: 2.89 solar masses!
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* In discovery paper, there was the suggestion (based on analogy with other low-eccentricity
systems, represented by the open circles) that this system is highly asymmetric.

 This would be a big deal: system would then be sensitive to dipolar GWs, but with the
advantages of DNSs: very precise measurements of masses and orbital decay!



PSR J1913+1102

Latest timing confirms this!

Total mass (assuming GR): ‘ B 1t
2.8887(7) solar masses.

2
|
|

Mass of the pulsar 1.62(3) solar
masses, mass of the companion
1.27(3) solar masses.

Companion Mass (M)

1

Orbital decay measured already to
15 sigma.

It matches GR prediction - again, no

dipolar GWs! o
0 1 2 3

Pulsar Mass (M)

Freire, Wex, Shao et al. Phys. Rev. Lett, submitted



Mass of pulsar is in the gap!
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FIG. 2. Effective scalar coupling (@4) as a function of neutron-star
compactness (Cn), for ay = 10™* and By = -3, -4,-4.5,-5 (blue
lines from bottom to top). The dashed red lines indicate the com-
pactness of PSR J1913+1102 (right) and its companion (left). For
comparison, the dotted black lines correspond to PSR J1738+0333
(left) and PSR J0348+0432. Calculations are based on EOS AP4 of
[42]. Note, the blue curves are (nearly) insensitive to a change in
the neutron-star EOS, while the compactness of a given NS can be
significantly different for different EOSs.

Freire, Wex, Shao et al. Phys. Rev. Lett, submitted



Gap Is closed: No spontaneous scalarization!

- The limits on coupling of matter with any extra scalar field already exclude spontaneous
scalarization for the whole NS mass range.

- Any effects of scalar fields on insipralling orbits now beyond the reach of Adv. LIGO!
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5. Conclusions

e Symmetric NSs, like the double pulsar system, JO737-3039, are now providing extremely precise
tests of the quadrupole formula. These limits win over LIGO tests for the lower PN orders by orders
of magnitude.

e With pulsar - white dwarf systems like PSRs J1738+0333 and J0348+0432, we have been able to
introduce strong constraints on coupling of matter to scalar fields. This has introduced strong
constraints on DEF gravity, and many other theories.

e With a new double neutron star system, PSR J1913+1102, we have a NS mass intermediate
between that of the previous pulsars. Orbital decay for this system excludes spontaneous
scalarization.

e No DGW emission has been detected for the whole known mass range. This means that GWs are
very purely quadrupolar, as expected from GR. This is a fundamental constraint on the nature of
gravitational radiation.




Thank you!

For questions and suggestions, contact me at: pfreire@mpifr-bonn.mpg.de, or see my site at
http://www3.mpifr-bonn.mpg.de/staff/pfreire/

To stay up to date on the latest precise NS mass measurements and GR tests, check:
http://www3.mpifr-bonn.mpg.de/staff/pfreire/NS masses.html

Review on NS masses and radii: Ozel & Freire (2016), ARAA, 54, 401


mailto:pfreire@mpifr-bonn.mpg.de
http://www3.mpifr-bonn.mpg.de/staff/pfreire/
http://www3.mpifr-bonn.mpg.de/staff/pfreire/NS_masses.html

