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Introduction: ultra-high energy cosmic rays

I Charged particles
with E & 1018 eV

I Extragalactic origin
I Flux . 1 particle

km−2yr−1

⇓

Only indirect
observation with
extensive air
showers in Earth
atmosphere

Observed spectrum of cosmic rays

Propagation of Ultra-High Energy Cosmic Rays. Fitting spectrum and composition
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Introduction: observables & problems

Energy spectrum
Spectrum suppression was observed at E & 4 · 1019 eV

HiRes 2007, Pierre Auger 2008, Telescope Array 2012

Whether the cut-off is due to GZK effect or due to ending of injection spectrum:
there are no hints for new physics.



Introduction: observables & problems

UHECR mass composition?

Still not clear from direct EAS measurements
I Low statistics and high systematics with

fluorescence observations of EAS
I Moderate statistics but even higher

systematics with surface detector
observations of EAS

UHECR sources?

Still not clear from direct EAS measurements
I Hard to detect arrival direction: deflection of

(charged) CR in galactic magnetic field



Outline: observables & and opportunities

Multimessengers with UHECR

Secondary UHECR signals: UHE γ’s & ν’s
I Not affected by galactic magnetic fields -

point directly to the sources
I Flux depends on UHECR mass composition

- independent probe

Fundamental physics with
UHECR

Photon flux upper-limit, E > 1 EeV

0 0.242201km 2yr 1

90° 180°270°

+90°

-90°

0°

Test for
I Search for heavy dark matter with UHECR:

various signatures
I Search for axion-like particles — photon

conversion: UHE γ correlation with Blazars
Lacertae

All of this is not yet detected - time to improve sensitivity!



I. Secondary signals from UHECR propagation

I Nuclei
I Aγb → A′N
I Aγb → Aπ..
I Aγb → Ae+e−

I Protons and neutrons
I Nγb → N′π..
I pγb → pe+e−
I n→ pe−νe

I Electron-photon
cascades
I eγb → eγ
I γγb → e+e−
I e synchrotron losses

Attenuation processes 

Protons and neutrons

Pion production

e+ e- pair production

n→ pe
−
νe

N γb→ N’ π …

p γb→ p e+ e-

neutron β-decay

 Electron-photon cascade

e, γ

 Nuclei

Pion production

e+ e- pair production
A γb→ A e+ e-

Photo-disintegration
A γb→ A’ N.. 

e, γ

p, n

Pion production

e+ e- pair production

Photo-disintegration

A γb→ A e+ e-

Pion production

e+ e- pair production

Photo-disintegration
A γb→ A’ N.. 

A γb→ A e+ e-

Pion production

e+ e- pair production

A γb→ A π …

Photo-disintegration

Ultra-High Energy Cosmic Rays. Fitting spectrum and composition

n,p from nuclei
photo-
desintegration

γ,ν,n from GZK
ν from β−decay

Diffuse
γ-background
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UHECR propagation: attenuation lengthsEnergy loss lengths
IR/Optic background models used here:

F.Stecker et al. Astrophys.J.648:774,2006 (solid line)

Kneiske et al. astro-ph/1001.2132v1 (dotted line)

Propagation of Ultra-High Energy Cosmic Rays. Fitting spectrum and composition
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UHE ν and γ production

I Decay of mesons from pp and pγ collisions, e.g.

  

Eν ,Eγ & 1 EeV

I PeV ν detected by IceCube — not from GZK
I Only constraints for UHE ν IceCube, Auger, Anita

I Only constraints for UHE γ Auger, TA, Yakutsk
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UHE ν and γ: probe for UHECRДлины поглощения

Распространение КЛСВЭ. Вторичные сигналы.

Universal Radio Background

large uncertainty !

  10-20 Mpc

GZK photons

TeV photons

GZK photons:

TeV photons

and ν

P, Fe: 50-100Mpc

all universe
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Diffuse UHE photons flux limits
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I Diffuse UHE γ limits are already probe most optimistic GZK predictions
I A separation between proton and nuclei predictions allows one to probe UHECR

compostion

There is a way to improve these results
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Prospect for target GZK photon search

I Assume that sources of UHECR are trace the Large Scale Structure
I Simulate the UHECR propagation and find distance from which 90% of secondary

UHE photons arrives
I Maka a cut on this distance and perform a target search for UHE γ from LSS

directions.
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Eγ=10 EeV

Eγ , EeV max. flux R90% min. flux R90%

3 310 Mpc 350 Mpc
10 140 Mpc 170 Mpc
30 45 Mpc 40 Mpc
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Prospect for target GZK photon search: parameter dependence

γ-flux depends on:
I Primary proton injection spectrum (moderately)
I Value of extragalactic magn. field (strongly)
I Model of interstellar radio background (strongly)
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The most promising energy region for UHECR composition probe is Eγ > 1018.5 eV.
But attenuation for this region is the smallest

⇓

LSS ' whole sky

⇓

Some source weighting is needed for target search
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Prospect for target GZK photon search: sensitivity improvement

2MRS, D < 40 Mpc

0 1

Rough estimate of sensitivity improvement is Q ≡ 4π/ΩLSS
With angular resolution σ = 1.92◦ at Eγ > 30EeV and without source weighting:

Q ' 1.5

⇓
Flux weighting and angular resolution improvement is needed for more efficient UHE γ

search
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II. Fundamental physics with UHECR: axion-like particles

I Correlations of UHECR with distant Blazars Lacertae (BL Lacs) were observed by
HiRes experiment Gorbunov et al. 2004, HiRes 2005

I The significance of result is 3.5σ
I Still not excluded by modern experiments

P-value vs. angular distance from
sources

Cosmic ray BL Lac
α, deg. δ, deg. name z

17.8 −12.5 RBS 0161 0.234
48.5 5.8 RX J03143+0620 ?

118.7 48.1 TXS 0751+485 ?
123.8 57.0 RX J08163+5739 ?
137.2 33.5 Ton 1015 0.354
162.6 49.2 MS 10507+4946 0.140
169.3 25.9 RX J11176+2548 0.360
209.9 59.7 RX J13598+5911 ?
226.5 56.5 SBS 1508+561 ?
229.0 56.4 SBS 1508+561 ?
253.7 39.8 RGB J1652+403 ?
265.3 46.7 OT 465 ?
300.2 65.1 1ES 1959+650 0.047
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II. Fundamental physics with UHECR: axion-like particles

BL Lac – UHECR correlation properties
I E > 1019 eV
I Small separation angle (∼ 0.8◦) between BL Lacs and UHECR: not possible with

charged particles due to gal.magnetic field
I Sources are too distant: indications for the anomalous high attenuation length of

neutral particles
I The fraction of correlated events is η ∼ 2%: consistent with recent diffuse UHE γ

limits
I The only viable explanation is UHEγ → ALP → UHEγ conversion

Fairbairn et al. 2009

M. Kuznetsov Multimessengers with UHECR 15



Forecast for BL Lac – UHE γ correlation test

How to test this result?

It is possible with large statistics of modern UHECR
experiments and their sensitivity to UHE γ

The sensitivity needed was estimated
Gorbunov et al. 2005

Q = S√
B
∼ η

√
NF
σ

where N is number of detected events, σ is angular resolution of experiment, F is
geographical factor of experiment and η is fraction of UHE photons among detected
events.
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Probe of BL Lac – UHE γ correlation with modern experiments

Q =
S√
B
∼ η
√

NF
σ

I Geography: the majority of BL Lacs are located in the
Northern Hemisphere:
FHiRes = 1.38; FTA = 1.41; FAuger = 0.53.
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Probe of BL Lac – UHE γ correlation with modern experiments

Q =
S√
B
∼ η
√

NF
σ

I Geography: the majority of BL Lacs are located in the
Northern Hemisphere:
FHiRes = 1.38; FTA = 1.41; FAuger = 0.53.

I Angular resolution for γ: larger for FD experiments:
σHiRes = 0.6◦; σTA SD = 2.65◦; σAuger hybrid = 0.7◦.
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Probe of BL Lac – UHE γ correlation with modern experiments

Q =
S√
B
∼ η
√

NF
σ

I Geography: the majority of BL Lacs are located in the
Northern Hemisphere:
FHiRes = 1.38; FTA = 1.41; FAuger = 0.53.

I Angular resolution for γ: larger for FD experiments:
σHiRes = 0.6◦; σTA SD = 2.65◦; σAuger hybrid = 0.7◦.

I Number of events: NSD is ∼ 10 times larger than NFD
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Probe of BL Lac – UHE γ correlation with modern experiments

Q =
S
√

B
∼
η
√

NF
σ

Main problem:

Energy reconstruction: for fluorescence detectors the energy scale for protons is the
same as for photons. For SD it is not so. Troitsky et al. 2009

AGASA 10
19

eV

S

Auger 1019 eV

S

-1 -0.5 0 0.5 1

Log10HErec�EL

Therefore, the same cut on Eγ yields different γ fraction:
ηHiRes ' 2%; ηTA SD ' 0.5%; ηAuger ' 0.1%.

I will discuss a possible probe with TA SD.
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Prospect for probe of BL Lac – UHE γ correlation with TA SD

TA SD reconstruction improved with Neural Net (preliminary). Kalashev ACAT-2019

I Angular resolution for γ: σ = 2.65◦ → σ = 2.13◦

I p – γ classification: cut the UHECR sample to increase η: η ' 0.5%→ η ' 68%

Resulting sensitivity improvement comparing to HiRes (preliminary):

QTA SD NN/QHiRes ' 2.7

⇓

TA can either confirm the BL Lac — UHE γ correlation with significance > 5σ or
constrain the total UHE γ fraction from BL Lac to η ' 0.5% with 95%C.L.
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III. Dark matter and UHECR

I Standard thermal WIPM DM
was not detected yet

I IceCube observed several
PeV ν that cannot be a
product of WIMP annihilation

I Can it be a product of heavy
DM decay?
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Heavy dark matter (HDM)

Particles X with mass MX � 100 TeV and lifetime τ � 1010 yr
Kuzmin, Rubakov ’97; Berezinsky et al. ’97; Birkel, Sarkar ’98

1. Naturally to generate non-thermally in the early Universe:
I Non-stationary gravitational fields
I Non-equilibrium plasma
I Inflaton decay (preheating)

2. Particle concentration is too low⇒ non-accessible for direct detection
(σest.

AX ∼ 10−55cm2)

3. Indirect detection sensitive only to decay, but not to annihilation: σann. . 1
M2

X

4. Consider masses 106 ≤ MX ≤ 1016 GeV (although there are some mass
constraints from cosmology)
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Heavy dark matter (HDM)

Can we probe HDM with UHECR?
Sure!

For large enough MX and any decay channel hadronic / electroweak cascade develops

⇓

The final state contains all stable SM particles.

⇓

There is a number of signatures in UHECR

I Dipole in UHECR spatial distribution
I Flux of UHE γ

I Flux of UHE ν
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Heavy dark matter decay physics

I Decay for two primary
channels: X → qq̄ and
X → νν̄

I X → qq̄ yields the softest
injection spectrum in both γ
and ν;
X → νν̄ — the hardest.

I Analytical calculation with
fragmentation functions and
DGLAP equations

Aloisio et al. ’03;
Kachelriess, Kalashev & MK ’18.

γ, MX=107 GeV

γ, MX=1015 GeV

ν, MX=107 GeV

ν, MX=1015 GeV
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Heavy dark matter decay: signal propagation

I For UHE γ flux only the
galactic DM contribution is
relevant. For ν — both
galactic and extragalactic.

I Take into account
γ → e+e− → γ cascades on
cosmic photon backgrounds
Kalashev, Kido ’14.
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High energy gamma-rays: observational data
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High energy gamma-rays: constraints on heavy dark matter

Constraints on DM lifetime from
comparison of the DM model

γ-flux with the high-energy γ limits

PAO SD 2015

PAO hybrid 2016

TA 2017

Yakutsk 2010

KASCADE-Grande 2017

KASCADE 2017

CASA-MIA 1997

EAS-MSU 2017
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High energy neutrino: observational data

Highest energy observed event
has E ' 2 PeV, for higher
energies upper-limits are set
IceCube ’18, Auger ’15
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IceCube 2013 (x 1/3) [30]

Auger (this work)

ANITA-II 2010 (x 1/3) [29]

 modelsνCosmogenic  

p, Fermi-LAT best-fit (Ahlers '10) [33]

p, Fermi-LAT 99% CL band (Ahlers '10) [33]

p, FRII & SFR (Kampert '12) [31]

Waxman-Bahcall '01 [13]
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High energy neutrino: constraints on heavy dark matter

Explanation of IceCube highest
energy events by decay of HDM
with MX & 108 GeV is ruled out by
non-observation of UHE γ

γ

ν
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Cosmic–ray anisotropy: observations

Observable: amplitude of dipole in harmonic analysis over right ascension
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∑
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Cosmic–ray anisotropy: constraints on HDM

TA+PAO C1
TA+PAO C2
PAO (NFW)

PAO (Burkert)
Yakutsk
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IceCube
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UHECR anisotropy probes heavy dark matter not so efficient as UHE γ and ν limits.
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Prospects of indirect search for heavy dark matter

How large is the anisotropy of
cosmic–rays induced by the
allowed heavy dark matter?

I Running experiments are
more sensitive to dark matter
decay gamma-rays than to
the respective anisotropy.

I The detected CR anisotropy
is not of DM origin

I Vise-versa, future orbital
UHECR detectors assumed
to be more sensitive to HDM
induced UHECR anisotropy
than to UHE γ signal
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Conclusions

UHECR is a viable probe for fundamental physics and an interesting target for
multimessenger studies

I UHECR sources and composition can be probed with UHE γ rays
I Photon—ALP mixing hypothesis can be tested indirectly by modern UHECR

observatories
I Decaying heavy dark matter can be efficiently searched for with UHE γ ray

observation

Thank you!
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Backup slides
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UHECR propagation: deflections in magnetic fields

I Deflection in galactic magnetic field:
∆Θ
Z ' 2.5◦ 100EeV

E
B

3µG

I Extragalactic magnetic field in voids:
∆Θ
Z . 0.4◦ 100EeV

E
B

0.1nG

√
Lλcor

10Mpc

I Recent constraints on BEG and its correlation length λcor :

10−17G . BEG . 10−9G

λcor & 1pc
R. Durrer & A. Neronov 2013
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