#### Multimessengers and fundamental physics with ultra-high energy cosmic rays

Mikhail Kuznetsov ULB, Brussels & INR RAS, Moscow





Multimessengers Workshop, Prague December 5, 2019

Supported by Russian Science Foundation

### Introduction: ultra-high energy cosmic rays

- Charged particles with  $E \gtrsim 10^{18} eV$
- Extragalactic origin
- Flux  $\lesssim$  1 particle km<sup>-2</sup>yr<sup>-1</sup>
  - ∜

Only indirect observation with extensive air showers in Earth atmosphere





#### Introduction: observables & problems

#### **Energy spectrum**

Spectrum suppression was observed at  $E \gtrsim 4 \cdot 10^{19} eV$ 

HiRes 2007, Pierre Auger 2008, Telescope Array 2012



Whether the cut-off is due to GZK effect or due to ending of injection spectrum:

there are no hints for new physics.

#### Introduction: observables & problems



## UHECR mass composition?

#### Still not clear from direct EAS measurements

- Low statistics and high systematics with fluorescence observations of EAS
- Moderate statistics but even higher systematics with surface detector observations of EAS

#### **UHECR sources?**



#### Still not clear from direct EAS measurements

 Hard to detect arrival direction: deflection of (charged) CR in galactic magnetic field

#### **Multimessengers with UHECR**

# Fundamental physics with UHECR



#### Secondary UHECR signals: UHE $\gamma$ 's & $\nu$ 's

- Not affected by galactic magnetic fields point directly to the sources
- Flux depends on UHECR mass composition

   independent probe



#### Test for

- Search for heavy dark matter with UHECR: various signatures
- Search for axion-like particles photon conversion: UHE γ correlation with Blazars Lacertae

#### All of this is not yet detected - time to improve sensitivity!

## Nuclei

- $\blacktriangleright$   $A\gamma_b \rightarrow A'N$
- $\blacktriangleright A\gamma_b \rightarrow A\pi..$
- $\blacktriangleright$   $A\gamma_b \rightarrow Ae^+e^-$
- Protons and neutrons
  - $\blacktriangleright N\gamma_b \rightarrow N'\pi..$
  - $\blacktriangleright p\gamma_b \rightarrow pe^+e^-$
  - ▶  $n \rightarrow pe^-\overline{\nu}_e$
- Electron-photon cascades

• 
$$e\gamma_b \rightarrow e\gamma$$

- $\begin{array}{c} \bullet & \gamma \gamma_b \rightarrow e^+ e^- \\ \bullet & e \text{ synchrotron losses} \end{array}$



n,p from nuclei photodesintegration

 $\gamma, \nu, n$  from GZK  $\nu$  from  $\beta$ -decay

Diffuse  $\gamma$ -background

## UHECR propagation: attenuation lengths



• Decay of mesons from pp and  $p\gamma$  collisions, e.g.

$$p + \gamma_b \to \Delta(1232) \to p + \pi^{0} \xrightarrow{\gamma + \gamma} \qquad E_{\gamma}/E_p \simeq 0.1$$
$$\searrow n + \pi^{+} \xrightarrow{\mu^+} \nu_{\mu} \qquad E_{\nu}/E_p \simeq 0.05$$

$$E_
u, E_\gamma \gtrsim$$
 1 EeV

- PeV v detected by IceCube not from GZK
- Only constraints for UHE  $\nu$

IceCube, Auger, Anita

• Only constraints for UHE  $\gamma$ 

Auger, TA, Yakutsk

### UHE $\nu$ and $\gamma$ : probe for UHECR



|                            | UHE $\nu$ | $UHE \gamma$ |
|----------------------------|-----------|--------------|
| UHECR Direction            | +         | +            |
| UHECR Source evolution     | +         | -            |
| UHECR Local source density | -         | +            |

#### Diffuse UHE photons flux limits



- A separation between proton and nuclei predictions allows one to probe UHECR composition

There is a way to improve these results

#### Prospect for target GZK photon search

- Assume that sources of UHECR are trace the Large Scale Structure
- Simulate the UHECR propagation and find distance from which 90% of secondary UHE photons arrives
- Maka a cut on this distance and perform a target search for UHE γ from LSS directions.



| $E_{\gamma}$ , EeV | max. flux R <sub>90%</sub> | min. flux R <sub>90%</sub> |
|--------------------|----------------------------|----------------------------|
| 3                  | 310 Mpc                    | 350 Mpc                    |
| 10                 | 140 Mpc                    | 170 Mpc                    |
| 30                 | 45 Mpc                     | 40 Mpc                     |

### Prospect for target GZK photon search: parameter dependence

 $\gamma$ -flux depends on:

- Primary proton injection spectrum (moderately)
- Value of extragalactic magn. field (strongly)
- Model of interstellar radio background (strongly)



The most promising energy region for UHECR composition probe is  $E_{\gamma} > 10^{18.5}$  eV. But attenuation for this region is the smallest



#### Prospect for target GZK photon search: sensitivity improvement



Rough estimate of sensitivity improvement is  $Q \equiv 4\pi/\Omega_{LSS}$ With angular resolution  $\sigma = 1.92^{\circ}$  at  $E_{\gamma} > 30 EeV$  and without source weighting:

# $\label{eq:Q} \frac{Q}{\simeq 1.5}$ $\Downarrow$ Flux weighting and angular resolution improvement is needed for more efficient UHE $\gamma$ search

#### II. Fundamental physics with UHECR: axion-like particles

- Correlations of UHECR with distant Blazars Lacertae (BL Lacs) were observed by HiRes experiment Gorbunov et al. 2004, HiRes 2005
- The significance of result is 3.5σ

P-value vs. angular distance from

Still not excluded by modern experiments



| Cosmic ray      |                 | BL Lac         |       |
|-----------------|-----------------|----------------|-------|
| $\alpha$ , deg. | $\delta$ , deg. | name           | Ζ     |
| 17.8            | -12.5           | RBS 0161       | 0.234 |
| 48.5            | 5.8             | RX J03143+0620 | ?     |
| 118.7           | 48.1            | TXS 0751+485   | ?     |
| 123.8           | 57.0            | RX J08163+5739 | ?     |
| 137.2           | 33.5            | Ton 1015       | 0.354 |
| 162.6           | 49.2            | MS 10507+4946  | 0.140 |
| 169.3           | 25.9            | RX J11176+2548 | 0.360 |
| 209.9           | 59.7            | RX J13598+5911 | ?     |
| 226.5           | 56.5            | SBS 1508+561   | ?     |
| 229.0           | 56.4            | SBS 1508+561   | ?     |
| 253.7           | 39.8            | RGB J1652+403  | ?     |
| 265.3           | 46.7            | OT 465         | ?     |
| 300.2           | 65.1            | 1ES 1959+650   | 0.047 |

### II. Fundamental physics with UHECR: axion-like particles

#### **BL Lac – UHECR correlation properties**

- E > 10<sup>19</sup> eV
- Small separation angle (~ 0.8°) between BL Lacs and UHECR: not possible with charged particles due to gal.magnetic field
- Sources are too distant: indications for the anomalous high attenuation length of neutral particles
- $\blacktriangleright\,$  The fraction of correlated events is  $\eta\sim$  2%: consistent with recent diffuse UHE  $\gamma\,$  limits
- ▶ The only viable explanation is  $UHE\gamma \rightarrow ALP \rightarrow UHE\gamma$  conversion

Fairbairn et al. 2009



#### How to test this result?

It is possible with large statistics of modern UHECR experiments and their sensitivity to UHE  $\gamma$ 

The sensitivity needed was estimated

Gorbunov et al. 2005

$${m Q}=rac{{m S}}{\sqrt{{m B}}}\sim rac{\eta\sqrt{{m NF}}}{\sigma}$$

where *N* is number of detected events,  $\sigma$  is angular resolution of experiment, *F* is geographical factor of experiment and  $\eta$  is fraction of UHE photons among detected events.

#### Probe of BL Lac – UHE $\gamma$ correlation with modern experiments

$$Q = \frac{S}{\sqrt{B}} \sim \frac{\eta \sqrt{NF}}{\sigma}$$

Geography: the majority of BL Lacs are located in the Northern Hemisphere: F<sub>HiRes</sub> = 1.38; F<sub>TA</sub> = 1.41; F<sub>Auger</sub> = 0.53.

#### Probe of BL Lac – UHE $\gamma$ correlation with modern experiments

$${\it Q}=rac{{\it S}}{\sqrt{{\it B}}}\sim rac{\eta\sqrt{{\it NF}}}{\sigma}$$

- Geography: the majority of BL Lacs are located in the Northern Hemisphere: F<sub>HiRes</sub> = 1.38; F<sub>TA</sub> = 1.41; F<sub>Auger</sub> = 0.53.
- Angular resolution for  $\gamma$ : larger for FD experiments:  $\sigma_{\text{HiRes}} = 0.6^{\circ}$ ;  $\sigma_{\text{TA SD}} = 2.65^{\circ}$ ;  $\sigma_{\text{Auger hybrid}} = 0.7^{\circ}$ .

$${m Q} = rac{{m S}}{\sqrt{{m B}}} \sim rac{\eta \sqrt{{m NF}}}{\sigma}$$

- Geography: the majority of BL Lacs are located in the Northern Hemisphere: F<sub>HiRes</sub> = 1.38; F<sub>TA</sub> = 1.41; F<sub>Auger</sub> = 0.53.
- Angular resolution for  $\gamma$ : larger for FD experiments:  $\sigma_{\text{HiRes}} = 0.6^{\circ}$ ;  $\sigma_{\text{TA SD}} = 2.65^{\circ}$ ;  $\sigma_{\text{Auger hybrid}} = 0.7^{\circ}$ .
- Number of events:  $N_{\rm SD}$  is  $\sim$  10 times larger than  $N_{\rm FD}$

#### Probe of BL Lac – UHE $\gamma$ correlation with modern experiments

$$Q = rac{S}{\sqrt{B}} \sim rac{\eta \sqrt{NF}}{\sigma}$$

Main problem:

Energy reconstruction: for fluorescence detectors the energy scale for protons is the same as for photons. For SD it is not so. *Troitsky et al. 2009* 



Therefore, the same cut on  $E_{\gamma}$  yields different  $\gamma$  fraction:  $\eta_{\text{HiRes}} \simeq 2\%; \eta_{\text{TA SD}} \simeq 0.5\%; \eta_{\text{Auger}} \simeq 0.1\%.$ 

I will discuss a possible probe with TA SD.

TA SD reconstruction improved with Neural Net (preliminary). Kalashev ACAT-2019

- Angular resolution for  $\gamma$ :  $\sigma = 2.65^{\circ} \rightarrow \sigma = 2.13^{\circ}$
- ▶  $p \gamma$  classification: cut the UHECR sample to increase  $\eta$ :  $\eta \simeq 0.5\% \rightarrow \eta \simeq 68\%$

Resulting sensitivity improvement comparing to HiRes (preliminary):

 $Q_{\mathrm{TA~SD~NN}}/Q_{\mathrm{HiRes}}\simeq 2.7$ 

#### ₩

TA can either confirm the BL Lac — UHE  $\gamma$  correlation with significance > 5 $\sigma$  or constrain the total UHE  $\gamma$  fraction from BL Lac to  $\eta \simeq 0.5\%$  with 95%C.L.

#### III. Dark matter and UHECR

- Standard thermal WIPM DM was not detected yet
- IceCube observed several PeV v that cannot be a product of WIMP annihilation
- Can it be a product of heavy DM decay?



Particles X with mass  $M_X \gg 100$  TeV and lifetime  $\tau \gg 10^{10}$  yr

Kuzmin, Rubakov '97; Berezinsky et al. '97; Birkel, Sarkar '98

- 1. Naturally to generate non-thermally in the early Universe:
  - Non-stationary gravitational fields
  - Non-equilibrium plasma
  - Inflaton decay (preheating)
- 2. Particle concentration is too low  $\Rightarrow$  non-accessible for direct detection  $(\sigma_{AX}^{\rm ext.} \sim 10^{-55} \, cm^2)$
- 3. Indirect detection sensitive only to decay, but not to annihilation:  $\sigma_{ann.} \lesssim \frac{1}{M^2}$
- 4. Consider masses  $10^6 \leq M_X \leq 10^{16}~GeV$  (although there are some mass constraints from cosmology)

#### Can we probe HDM with UHECR?

Sure!

For large enough  $M_X$  and any decay channel hadronic / electroweak cascade develops

The final state contains all stable SM particles.

 $\downarrow$ 

₩

There is a number of signatures in UHECR

- Dipole in UHECR spatial distribution
- Flux of UHE γ
- Flux of UHE ν

#### Heavy dark matter decay physics

- Decay for two primary channels:  $X \rightarrow q\bar{q}$  and  $X \rightarrow \nu\bar{\nu}$
- $X \rightarrow q\bar{q}$  yields the softest injection spectrum in both  $\gamma$ and  $\nu$ ;  $X \rightarrow \nu\bar{\nu} -$  the hardest
- Analytical calculation with fragmentation functions and DGLAP equations

Aloisio et al. '03;

Kachelriess, Kalashev & MK '18.



#### Heavy dark matter decay: signal propagation

- For UHE γ flux only the galactic DM contribution is relevant. For ν both galactic and extragalactic.
- Take into account γ → e<sup>+</sup>e<sup>-</sup> → γ cascades on cosmic photon backgrounds Kalashev, Kido '14.





### High energy gamma-rays: constraints on heavy dark matter

1023  $X \rightarrow q \overline{q} \rightarrow \gamma$ 1022 r, yr  $10^{21}$ PAO SD 2015 PAO hybrid 2016  $10^{20}$ TA 2017 Yakutsk 2010 KASCADE-Grande 2017 KASCADE 2017 10<sup>19</sup> CASA-MIA 1997 EAS-MSU 2017  $10^{8}$  $10^{10}$  $10^{12}$  $10^{14}$ M<sub>x</sub>, GeV 1023  $X \rightarrow \nu \overline{\nu} \rightarrow \gamma$  $10^{22}$ ג 10<sup>21</sup> PAO SD 2015 PAO hybrid 2016  $10^{2}$ TA 2017 Yakutsk 2010 KASCADE-Grande 2017 KASCADE 2017  $10^{19}$ CASA-MIA 1997 EAS-MSU 2017  $10^{10}$ 1012 1014 M<sub>x</sub>, GeV

Constraints on DM lifetime from comparison of the DM model  $\gamma$ -flux with the high-energy  $\gamma$  limits

#### High energy neutrino: observational data



ANITA (2018

#### High energy neutrino: constraints on heavy dark matter

 $10^{23}$  $10^{22}$ ג<sup>5</sup> 10<sup>21</sup> Carpet2 1vr  $10^{20}$ Carpet3 5vr IceCube '18 HAWC '17 Cohen '16 (IceCube)  $10^{19}$ Cohen '16 (Fermi)  $10^{10}$  $10^{13}$  $10^{9}$  $10^{11}$ 1012 M<sub>X</sub>, GeV  $10^{23}$ 1022 ∑ 10<sup>21</sup>  $\gamma$ , diffuse e<sup>±</sup> γ, straight e<sup>±</sup>  $10^{20}$ Carpet2 1yr Carpet3 5yr IceCube '18  $10^{19}$ HAWC '17  $10^{7}$  $10^{8}$  $10^{9}$  $10^{10}$  $10^{11}$  $10^{12}$  $10^{13}$ M<sub>X</sub>, GeV

Explanation of IceCube highest energy events by decay of HDM with  $M_X\gtrsim 10^8~{\rm GeV}$  is ruled out by non-observation of UHE  $\gamma$ 

### Cosmic-ray anisotropy: observations

Observable: amplitude of dipole in harmonic analysis over right ascension

### Cosmic-ray anisotropy: constraints on HDM



UHECR anisotropy probes heavy dark matter not so efficient as UHE  $\gamma$  and  $\nu$  limits.

#### Prospects of indirect search for heavy dark matter

How large is the anisotropy of cosmic–rays induced by the allowed heavy dark matter?

- Running experiments are more sensitive to dark matter decay gamma-rays than to the respective anisotropy.
- The detected CR anisotropy is not of DM origin
- Vise-versa, future orbital UHECR detectors assumed to be more sensitive to HDM induced UHECR anisotropy than to UHE γ signal



# UHECR is a viable probe for fundamental physics and an interesting target for multimessenger studies

- UHECR sources and composition can be probed with UHE  $\gamma$  rays
- Photon—ALP mixing hypothesis can be tested indirectly by modern UHECR observatories
- Decaying heavy dark matter can be efficiently searched for with UHE γ ray observation

## Thank you!

## Backup slides

Deflection in galactic magnetic field:

$$\begin{split} & \frac{\Delta\Theta}{Z}\simeq 2.5^\circ \frac{100\text{EeV}}{E}\frac{B}{3\mu\text{G}}\\ \textbf{Extragalactic magnetic field in voids:}\\ & \frac{\Delta\Theta}{Z}\lesssim 0.4^\circ \frac{100\text{EeV}}{E}\frac{B}{0.1\text{nG}}\frac{\sqrt{L\lambda_{cor}}}{10\text{Mpc}}\\ \textbf{Becent constraints on } B_{\text{EG}} \text{ and its correlation length } \lambda_{cor}\text{:}\\ & 10^{-17}\text{G}\lesssim B_{\text{EG}}\lesssim 10^{-9}\text{G}\\ & \lambda_{cor}\gtrsim 1\text{pc} \end{split}$$

R. Durrer & A. Neronov 2013