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result of the distribution of the axion energy density in
the reference plane at time corresponding to q =4 for the
harmonic potential to demonstrate that as expected the
evolution of the field in the linear regime is frozen by
g=3. Note that the typical magnitude of the peaks is
about 2 for the harmonic potential.
There is a simple, heuristic explanation for the fact

that nonlinear e6'ects lead to the formation of high densi-
ty peaks. The average pressure over a period of homo-
geneous axion oscillations in the axion potential is nega-
tive, and is equal to (P) =—A, (T)8O/64, where Ho is
the amplitude of the oscillations [17] (this formula is val-

id for Oo &&m; as Oo~m, the field spends more and more
time near the top of the potential, and (P )~—2A, ). In
other words, the axion self-interaction is attractive. The
larger the amplitude of oscillations inside the fluctuation,
the more negative the pressure inside, and consequently,
fluctuations with excess axions will contract in the
comoving volume. In addition, matter with a smaller
pressure su@'ers less redshift in cosmological expansion.
Before continuing our exploration of the evolution of

the peaks by means of a one-dimensional calculation, we
present some results of calculations with 3 =2, where
domain walls are much more likely to form than the
above calculation with A =1. The best way to illustrate
the presence of domain walls is by a contour graph,
where the shading represents the amplitude of the axion
energy density. We show a graph of the energy density
distributions for the axion potential at time g=2 with
A =2 in Fig. 5(a) and compare it to a similar contour
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FIG. 2. A two-dimensional slice through the three-
dimensional box at time corresponding to g= 2 for the harmon-
ic potential (top) and the axion potential (lower). The Hubble
radius at this time is 2 units and the inverse of the axion mass is
0.038 units. The height of the figure corresponds to the energy
density in the axion field normalized to the height for homo-
geneous field evolution: p, ( r]=2 ) /p, ( g =2).

20f course the average pressure is dominated by relativistic
species at this time. It is the pressure contributed by the axions
that is negative.
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FIG. 3. A two-dimensional slice through the three-
dimensional box at time corresponding to g =3 for the harmon-
ic potential (top) and the axion potential (lower). The Hubble
radius at this time is 3 units and the inverse of the axion mass is
0.005 units. The height of the figure corresponds to the energy
density in the axion field normalized to the height for homo-
geneous field evolution: p, (q =3)/p, (q =3).

Which Dark Matter ? 

MACHOs - MAssive Compact Halo Objects

10�17M� < M < 103M�

Examples : 
• primordial black holes

• axion miniclusters / ultracompact minihalos

Carr & Hawking (1974)

Hogan & Rees (1988) 
Kolb & Tkachev (1993)



Figure 2: 3D!2D projection plots of the axion density squared
R

dz(%(x)/%̄)2 for several values of ⌧ . The
densest structures distinctly appear in the plots for the 4 stages of the evolution of axion dark matter simu-
lations: string-network scaling (up-left to up-right), domain walls attached to strings pulling the strings into
destruction (down-left) and frozen dark matter field with axitons (down-right). The simulation parameters are
L = 6L

1

, msa = 1.0, n = 7 and N = 4096.
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FIG. 1. Left: projected axion density of the full simulation box at z = 99. Right: a zoom-in of the largest MCH, where the
dashed circle indicates the sphere with density ⇢ = 200⇢m,0. The sub-MCs are colored according to their orbital velocity.

radii span the ranges 2.5 ⇥ 10�16 ⇠ 3.0 ⇥ 10�9 M� and
0.4 ⇠ 92.0AU, respectively.

Minicluster halo mass function.– The minicluster halo
mass function (MC-HMF) is the comoving number den-
sity of gravitationally bound MCHs per logarithmic mass
interval as a function of MCH mass. It provides a quan-
titative picture of the dynamics of MCH formation.

The MC-HMFs computed from our simulation for dif-
ferent redshifts are shown in Fig. 2. At early times
(z � zeq, left panel), the MC-HMF grows quickly. It
is dominated at first by halos near the low-mass resolu-
tion cuto↵ ⇠ 10�15 M� and develops a pronounced peak
at Mmc ⇠ 10�13 M� by z ' 4 ⇥ 104. This rapid growth
can be understood as the collapse of the density fluctu-
ations that are deeply non-linear at high-z. Thus, we
can identify the peak as due to the largest non-linear
fluctuations, which should be the “canonical” MCs. The
abundance of low-mass MCs is the result of the small
density seeds found in [22] when simulating axions with
strings. The overall amplitude of the MC-HMF rises un-
til matter-radiation equality, flattening out the peak at
Mmc while extending toward higher masses.

By the time of equality (z ' zeq), the MC-HMF has
developed into a power-law with a slope of ↵ ' �0.7
and an exponential cuto↵ at ⇠ 10�11M�, corresponding
to the largest canonical MCs, which typically had only
O(1) initial overdensities [22].

During the post-equality evolution (z ⌧ zeq, right
panel in Fig. 2) the high-mass cuto↵ continues to grow
at the expense of the total amplitude, which smoothly
declines in time. Fitting the MC-MHF to a power-law
times a high-mass cuto↵ still prefers the same overall
slope ↵ ' �0.7. However, the fluctuations that col-
lapse after zeq are already small (linear) and the semi-
analytic Press-Schechter method predicts a MC-HMF
dn/dlogM / M�1/2 [15], which is also compatible with
the high-mass data. Indeed, a double-power law fit with

cuto↵ provides a better fit to the MC-HMF in this regime.
More statistics is needed to quantify it, which we leave
for future work.

The late evolution is dominated by mergers with slowly
diminishing accretion of unbound axions onto existing
MCHs. This is confirmed by the slow saturation of the
total fraction of bound axions (upper panel of Fig. 3)
reaching fb ⇠ 0.75 at zf = 99, and the evolution of the
total number of MCHs (lower panel of Fig. 3). Consid-
ering MCHs with masses above the low-mass resolution
cuto↵ at ⇠ 10�15 M�, we see that after their formation
at z ' 7 ⇥ 105 their number grows until z ' zeq. Af-
terwards, their number is reduced as a result of ongoing
mergers. By distinguishing between Ntot above certain
mass scales we observe at which redshift MCHs with in-
creasing masses emerge. Evidently, MCHs with masses
up to 10�11 M� begin to form before matter-radiation
equality while higher-mass MCHs arise only for z < zeq.

In order to characterize the distribution of sub-MCs
within the MCHs, we compare the substructure of ten
high-mass with ten medium-mass MCHs (mass samples
are defined in Table I) in Fig. 4. For this, we identified
all sub-MCs within the virial radius of each MCH and
normalized the sub-MC masses to the virial mass of the
corresponding parent MCH. Figure 4 shows the relative
number of sub-MCs, i.e. the number of sub-MCs divided
by the total numberNsub,tot of sub-MCs contained within
the parent MCH. For both subsets, the slopes of the aver-
aged sub-MC-HMFs are similar to that of the MC-HMF,
↵ ' �0.7. The independence of the slopes from the par-
ent MCH mass agrees with previous results for subhalo
mass functions in CDM simulations [27, 28].

Density profiles.– We study the angular-averaged den-
sity profiles ⇢(r) of MCHs in the last snapshot of our sim-
ulation, zf = 99, for which we separated them into three
mass samples (cf. Table I). The stacked density profiles
of 20 MCHs in each sample, truncated at the numerical

Eggemeier et al. (2019)



How to search ?

Gravitational lensing

Many surveys inside Milky Way / Local Group: MACHO, EROS, OGLE, 
SUBARU. Use microlensing technique: look for variations of observed 
intensity of background stars



� µas• angular separation between the images                for lens of solar 
mass — too small to be resolved

• the sources must be smaller than the Einstein ring = pointlike

Gamma Ray Bursts and Fast Radio Bursts

Advantages : 

ndmr2
EDS = 4G�dmD2

S � (H0DS)2�dm• optical depth

• DM mass function can be different in halos (e.g. miniclusters may 
be destroyed by tidal forces)

Challenges :

Lensing at cosmological scales
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Diffractive lensing
Gould (1992)

Idea: interference between two unresloved images produces fringes in 
the frequency spectrum

Fobs(t) = AFin(t) + BFin(t��t)

lensing time delay

fobs(�) = Afin(�) + Bfin(�)ei��t
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Pointlike source and lens, geometric optics

that a sample of 100 GRBs with transverse size 10

9 cm would be needed to exclude DM in
the form of PBHs in the mass range from 10

�16 to 5 ⇥ 10

�15 solar masses. We conclude in
Sec. 4. Details on the size of the emission region in a GRB are relegated to the Appendix.

2 Theory of Femtolensing

In this section we review the general idea of femtolensing and the underlying formalism, and
we address several important caveats. We will start by discussing the case of a point-like
lens affecting light from a point-like source in the geometric optics approximation. We then
introduce one-by-one the wave optics corrections, the effect of an extended source, and the
possibility of an extended lens whose size exceeds its would-be Einstein radius. To the best
of our knowledge, this study has not been performed before, but is strongly motivated by the
appeal of ultra-compact DM miniclusters.

2.1 Point-like Lens and Source, Geometric Optics Regime

The basic femtolensing scenario, put forward in [24], is based on the assumption that a
gamma ray emitted by a point-like source with a non-zero impact parameter with respect to
the lens–observer axis, is split by the lens into two rays, each of which is delayed with respect
to the unlensed case by some time shift �t

i

(i = 1, 2). This corresponds to a phase shift of
��

i

⌘ !�t
i

, where ! is the angular frequency of the photons. If the two images cannot be
resolved in space and time, the two rays will interfere, producing characteristic fringes in the
spectrum.

In the thin lens approximation the time delay is given by [35]

�t =
1

c

D
L

D
S

D
LS

(1 + z
L

)

 
|~✓ � ~�|2

2

�  (~✓)

!
. (2.1)

Here D
L

, D
S

, and D
LS

are the angular diameter distances between the observer and the lens,
the observer and the source, and the lens and the source, respectively. The redshift of the
lens is denoted z

L

, while � is the angle under which the observer would see the source in the
absence of a lens, and ✓ is the angle under which the observer sees a given point in the lens
plane. The function  (✓) is the lensing potential which is related to the density profile ⇢(r)
of the lens by the Poisson equation
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Here, the integral runs along the line of sight, and r2 is the two-dimensional Laplace operator,
which we express in polar coordinates, with ✓ being the radial direction. We have also assumed
a spherically symmetric lens. For a point-like lens of mass M ,1

 (✓) = ✓2
E

log ✓ (point-like lens) , (2.3)

1Note that the lensing potential is defined by eq. (2.2) only up to an additive constant. We will ignore this
constant here, which implies that the expression for the time delay, eq. (2.1), is applicable only for calculating
the time difference between different paths, but does nor necessary reflect the absolute time delay along the
path.
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is the Einstein angle (i.e. the Einstein radius R
E

divided by D
L

). On top of being a convenient
definition, the Einstein angle has a well defined physical meaning: in the geometric optics
approximation, it is the size of the Einstein ring produced by a point-like source aligned with
the observer–lens line of sight (� = 0). For the more general density profiles that we will
discuss in section 2.4 the location of the ring will be different from ✓

E

and will be called ✓0.
For point-like masses, the two values coincide.

In geometric optics, Fermat’s principle stipulates that the images will be seen under
those angles ✓ for which �t is stationary. For point-like lens and source, this requirement
leads to the lens equation2

✓ � � =

✓2
E

✓
. (2.5)

Lensing is typically observable when ✓ ⇠ ✓
E

(or, more generally, when ✓ ⇠ ✓0 for non-point-
like lenses), otherwise one of the images becomes extremely faint. This shows that both terms
in eq. (2.1) scale as ✓

E

up to order-one factors. The time delay thus depends only on the mass
of the lens and is practically insensitive to the distances either to the source or to the lens:
�t ⇠ 4GM/c3 = 2R

s

/c, where R
s

is the Schwarzschild radius of the lens. Assuming that the
source emits gamma rays in the 10 to 1000 keV range, we see that order-one phase shifts occur
for lens masses between 10

�17 and 10

�14 solar masses. For lensing at cosmological distances
⇠ 1Gpc the corresponding Einstein angles fall in the femto-arc-second range, which explains
the term “femtolensing”.

The solutions to the lens equation (2.5) are
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◆
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The magnifications of the two images are given by [35]
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Taking into account the phase shift between the images, the total intensity is proportional
to [31]
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where we have introduced the dimensionless frequency as
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2The generic lens equation is ~✓ � ~� = ~r (~✓).
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that a sample of 100 GRBs with transverse size 10

9 cm would be needed to exclude DM in
the form of PBHs in the mass range from 10

�16 to 5 ⇥ 10

�15 solar masses. We conclude in
Sec. 4. Details on the size of the emission region in a GRB are relegated to the Appendix.

2 Theory of Femtolensing

In this section we review the general idea of femtolensing and the underlying formalism, and
we address several important caveats. We will start by discussing the case of a point-like
lens affecting light from a point-like source in the geometric optics approximation. We then
introduce one-by-one the wave optics corrections, the effect of an extended source, and the
possibility of an extended lens whose size exceeds its would-be Einstein radius. To the best
of our knowledge, this study has not been performed before, but is strongly motivated by the
appeal of ultra-compact DM miniclusters.

2.1 Point-like Lens and Source, Geometric Optics Regime

The basic femtolensing scenario, put forward in [24], is based on the assumption that a
gamma ray emitted by a point-like source with a non-zero impact parameter with respect to
the lens–observer axis, is split by the lens into two rays, each of which is delayed with respect
to the unlensed case by some time shift �t
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(i = 1, 2). This corresponds to a phase shift of
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⌘ !�t
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, where ! is the angular frequency of the photons. If the two images cannot be
resolved in space and time, the two rays will interfere, producing characteristic fringes in the
spectrum.

In the thin lens approximation the time delay is given by [35]
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the observer and the source, and the lens and the source, respectively. The redshift of the
lens is denoted z
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, while � is the angle under which the observer would see the source in the
absence of a lens, and ✓ is the angle under which the observer sees a given point in the lens
plane. The function  (✓) is the lensing potential which is related to the density profile ⇢(r)
of the lens by the Poisson equation
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Here, the integral runs along the line of sight, and r2 is the two-dimensional Laplace operator,
which we express in polar coordinates, with ✓ being the radial direction. We have also assumed
a spherically symmetric lens. For a point-like lens of mass M ,1

 (✓) = ✓2
E

log ✓ (point-like lens) , (2.3)

1Note that the lensing potential is defined by eq. (2.2) only up to an additive constant. We will ignore this
constant here, which implies that the expression for the time delay, eq. (2.1), is applicable only for calculating
the time difference between different paths, but does nor necessary reflect the absolute time delay along the
path.
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Lensing is typically observable when ✓ ⇠ ✓
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(or, more generally, when ✓ ⇠ ✓0 for non-point-
like lenses), otherwise one of the images becomes extremely faint. This shows that both terms
in eq. (2.1) scale as ✓
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up to order-one factors. The time delay thus depends only on the mass
of the lens and is practically insensitive to the distances either to the source or to the lens:
�t ⇠ 4GM/c3 = 2R
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/c, where R
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is the Schwarzschild radius of the lens. Assuming that the
source emits gamma rays in the 10 to 1000 keV range, we see that order-one phase shifts occur
for lens masses between 10

�17 and 10

�14 solar masses. For lensing at cosmological distances
⇠ 1Gpc the corresponding Einstein angles fall in the femto-arc-second range, which explains
the term “femtolensing”.
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to [31]

µ =

y2 + 2

y
p
y2 + 4

+

2

y
p
y2 + 4

sin

 
⌦

"
y
p
y2 + 4

2

+ log

�����
y +

p
y2 + 4

y �
p
y2 + 4

�����

#!
, (2.9)

where we have introduced the dimensionless frequency as

⌦ ⌘ 1

c

D
S

D
L

D
LS

✓20(1 + z
L

)! ⌘ �t0 ! . (2.10)

2The generic lens equation is ~✓ � ~� = ~r (~✓).

– 4 –

where

✓
E

⌘
✓
4GM

c2
D

LS

D
S

D
L

◆1/2

(2.4)

is the Einstein angle (i.e. the Einstein radius R
E

divided by D
L

). On top of being a convenient
definition, the Einstein angle has a well defined physical meaning: in the geometric optics
approximation, it is the size of the Einstein ring produced by a point-like source aligned with
the observer–lens line of sight (� = 0). For the more general density profiles that we will
discuss in section 2.4 the location of the ring will be different from ✓

E

and will be called ✓0.
For point-like masses, the two values coincide.

In geometric optics, Fermat’s principle stipulates that the images will be seen under
those angles ✓ for which �t is stationary. For point-like lens and source, this requirement
leads to the lens equation2

✓ � � =

✓2
E

✓
. (2.5)

Lensing is typically observable when ✓ ⇠ ✓
E

(or, more generally, when ✓ ⇠ ✓0 for non-point-
like lenses), otherwise one of the images becomes extremely faint. This shows that both terms
in eq. (2.1) scale as ✓

E

up to order-one factors. The time delay thus depends only on the mass
of the lens and is practically insensitive to the distances either to the source or to the lens:
�t ⇠ 4GM/c3 = 2R

s

/c, where R
s

is the Schwarzschild radius of the lens. Assuming that the
source emits gamma rays in the 10 to 1000 keV range, we see that order-one phase shifts occur
for lens masses between 10

�17 and 10

�14 solar masses. For lensing at cosmological distances
⇠ 1Gpc the corresponding Einstein angles fall in the femto-arc-second range, which explains
the term “femtolensing”.

The solutions to the lens equation (2.5) are

✓± =

1

2

✓
� ±

q
�2

+ 4✓2
E

◆
. (2.6)

The magnifications of the two images are given by [35]

µ± =

y2 + 2

2y
p
y2 + 4

± 1

2

, (2.7)

where we have defined

y ⌘ �/✓
E

. (2.8)

Taking into account the phase shift between the images, the total intensity is proportional
to [31]

µ =

y2 + 2

y
p
y2 + 4

+

2

y
p
y2 + 4

sin

 
⌦

"
y
p
y2 + 4

2

+ log

�����
y +

p
y2 + 4

y �
p
y2 + 4

�����

#!
, (2.9)

where we have introduced the dimensionless frequency as

⌦ ⌘ 1

c

D
S

D
L

D
LS

✓20(1 + z
L

)! ⌘ �t0 ! . (2.10)

2The generic lens equation is ~✓ � ~� = ~r (~✓).

– 4 –

where

✓
E

⌘
✓
4GM

c2
D

LS

D
S

D
L

◆1/2

(2.4)

is the Einstein angle (i.e. the Einstein radius R
E

divided by D
L

). On top of being a convenient
definition, the Einstein angle has a well defined physical meaning: in the geometric optics
approximation, it is the size of the Einstein ring produced by a point-like source aligned with
the observer–lens line of sight (� = 0). For the more general density profiles that we will
discuss in section 2.4 the location of the ring will be different from ✓

E

and will be called ✓0.
For point-like masses, the two values coincide.

In geometric optics, Fermat’s principle stipulates that the images will be seen under
those angles ✓ for which �t is stationary. For point-like lens and source, this requirement
leads to the lens equation2

✓ � � =

✓2
E

✓
. (2.5)

Lensing is typically observable when ✓ ⇠ ✓
E

(or, more generally, when ✓ ⇠ ✓0 for non-point-
like lenses), otherwise one of the images becomes extremely faint. This shows that both terms
in eq. (2.1) scale as ✓

E

up to order-one factors. The time delay thus depends only on the mass
of the lens and is practically insensitive to the distances either to the source or to the lens:
�t ⇠ 4GM/c3 = 2R

s

/c, where R
s

is the Schwarzschild radius of the lens. Assuming that the
source emits gamma rays in the 10 to 1000 keV range, we see that order-one phase shifts occur
for lens masses between 10

�17 and 10

�14 solar masses. For lensing at cosmological distances
⇠ 1Gpc the corresponding Einstein angles fall in the femto-arc-second range, which explains
the term “femtolensing”.

The solutions to the lens equation (2.5) are

✓± =

1

2

✓
� ±

q
�2

+ 4✓2
E

◆
. (2.6)

The magnifications of the two images are given by [35]

µ± =

y2 + 2

2y
p

y2 + 4

± 1

2

, (2.7)

where we have defined

y ⌘ �/✓
E

. (2.8)

Taking into account the phase shift between the images, the total intensity is proportional
to [31]

µ =

y2 + 2

y
p

y2 + 4

+

2

y
p

y2 + 4

sin

 
⌦

"
y
p

y2 + 4

2

+ log

�����
y +

p
y2 + 4

y �
p

y2 + 4

�����

#!
, (2.9)

where we have introduced the dimensionless frequency as

⌦ ⌘ 1

c

D
S

D
L

D
LS

✓20(1 + z
L

)! ⌘ �t0 ! . (2.10)

2The generic lens equation is ~✓ � ~� = ~r (~✓).

– 4 –

Einstein angle

� = 4GM(1 + zL)�

Magnifications:

Total magnification:

y = �/�E



Pointlike source and lens, geometric optics

that a sample of 100 GRBs with transverse size 10

9 cm would be needed to exclude DM in
the form of PBHs in the mass range from 10

�16 to 5 ⇥ 10

�15 solar masses. We conclude in
Sec. 4. Details on the size of the emission region in a GRB are relegated to the Appendix.

2 Theory of Femtolensing

In this section we review the general idea of femtolensing and the underlying formalism, and
we address several important caveats. We will start by discussing the case of a point-like
lens affecting light from a point-like source in the geometric optics approximation. We then
introduce one-by-one the wave optics corrections, the effect of an extended source, and the
possibility of an extended lens whose size exceeds its would-be Einstein radius. To the best
of our knowledge, this study has not been performed before, but is strongly motivated by the
appeal of ultra-compact DM miniclusters.

2.1 Point-like Lens and Source, Geometric Optics Regime

The basic femtolensing scenario, put forward in [24], is based on the assumption that a
gamma ray emitted by a point-like source with a non-zero impact parameter with respect to
the lens–observer axis, is split by the lens into two rays, each of which is delayed with respect
to the unlensed case by some time shift �t
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(i = 1, 2). This corresponds to a phase shift of
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, where ! is the angular frequency of the photons. If the two images cannot be
resolved in space and time, the two rays will interfere, producing characteristic fringes in the
spectrum.

In the thin lens approximation the time delay is given by [35]
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lens is denoted z
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, while � is the angle under which the observer would see the source in the
absence of a lens, and ✓ is the angle under which the observer sees a given point in the lens
plane. The function  (✓) is the lensing potential which is related to the density profile ⇢(r)
of the lens by the Poisson equation
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Here, the integral runs along the line of sight, and r2 is the two-dimensional Laplace operator,
which we express in polar coordinates, with ✓ being the radial direction. We have also assumed
a spherically symmetric lens. For a point-like lens of mass M ,1

 (✓) = ✓2
E

log ✓ (point-like lens) , (2.3)

1Note that the lensing potential is defined by eq. (2.2) only up to an additive constant. We will ignore this
constant here, which implies that the expression for the time delay, eq. (2.1), is applicable only for calculating
the time difference between different paths, but does nor necessary reflect the absolute time delay along the
path.

– 3 –

�E =
�

4GM
DLS

DSDL

�1/2

where

✓
E

⌘
✓
4GM

c2
D

LS

D
S

D
L

◆1/2

(2.4)

is the Einstein angle (i.e. the Einstein radius R
E

divided by D
L

). On top of being a convenient
definition, the Einstein angle has a well defined physical meaning: in the geometric optics
approximation, it is the size of the Einstein ring produced by a point-like source aligned with
the observer–lens line of sight (� = 0). For the more general density profiles that we will
discuss in section 2.4 the location of the ring will be different from ✓

E

and will be called ✓0.
For point-like masses, the two values coincide.

In geometric optics, Fermat’s principle stipulates that the images will be seen under
those angles ✓ for which �t is stationary. For point-like lens and source, this requirement
leads to the lens equation2

✓ � � =

✓2
E

✓
. (2.5)

Lensing is typically observable when ✓ ⇠ ✓
E

(or, more generally, when ✓ ⇠ ✓0 for non-point-
like lenses), otherwise one of the images becomes extremely faint. This shows that both terms
in eq. (2.1) scale as ✓

E

up to order-one factors. The time delay thus depends only on the mass
of the lens and is practically insensitive to the distances either to the source or to the lens:
�t ⇠ 4GM/c3 = 2R

s

/c, where R
s

is the Schwarzschild radius of the lens. Assuming that the
source emits gamma rays in the 10 to 1000 keV range, we see that order-one phase shifts occur
for lens masses between 10

�17 and 10

�14 solar masses. For lensing at cosmological distances
⇠ 1Gpc the corresponding Einstein angles fall in the femto-arc-second range, which explains
the term “femtolensing”.

The solutions to the lens equation (2.5) are

✓± =

1

2

✓
� ±

q
�2

+ 4✓2
E

◆
. (2.6)

The magnifications of the two images are given by [35]

µ± =

y2 + 2

2y
p
y2 + 4

± 1

2

, (2.7)

where we have defined

y ⌘ �/✓
E

. (2.8)

Taking into account the phase shift between the images, the total intensity is proportional
to [31]

µ =

y2 + 2

y
p
y2 + 4

+

2

y
p
y2 + 4

sin

 
⌦

"
y
p
y2 + 4

2

+ log

�����
y +

p
y2 + 4

y �
p
y2 + 4

�����

#!
, (2.9)

where we have introduced the dimensionless frequency as

⌦ ⌘ 1

c

D
S

D
L

D
LS

✓20(1 + z
L

)! ⌘ �t0 ! . (2.10)

2The generic lens equation is ~✓ � ~� = ~r (~✓).

– 4 –

where

✓
E

⌘
✓
4GM

c2
D

LS

D
S

D
L

◆1/2

(2.4)

is the Einstein angle (i.e. the Einstein radius R
E

divided by D
L

). On top of being a convenient
definition, the Einstein angle has a well defined physical meaning: in the geometric optics
approximation, it is the size of the Einstein ring produced by a point-like source aligned with
the observer–lens line of sight (� = 0). For the more general density profiles that we will
discuss in section 2.4 the location of the ring will be different from ✓

E

and will be called ✓0.
For point-like masses, the two values coincide.

In geometric optics, Fermat’s principle stipulates that the images will be seen under
those angles ✓ for which �t is stationary. For point-like lens and source, this requirement
leads to the lens equation2

✓ � � =

✓2
E

✓
. (2.5)

Lensing is typically observable when ✓ ⇠ ✓
E

(or, more generally, when ✓ ⇠ ✓0 for non-point-
like lenses), otherwise one of the images becomes extremely faint. This shows that both terms
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/c, where R
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is the Schwarzschild radius of the lens. Assuming that the
source emits gamma rays in the 10 to 1000 keV range, we see that order-one phase shifts occur
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�17 and 10

�14 solar masses. For lensing at cosmological distances
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The magnifications of the two images are given by [35]
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where we have introduced the dimensionless frequency as
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Figure 1. Comparison of the interference picture in the geometric optics approximation (dashed)
and the full wave optics results (solid) in the case of a point-like source and a point-like lens. Wave
effects strongly impact the magnification of the signal at low energies, while at higher energies, geo-
metric optics provides a good approximation. The magnification is plotted against the dimensionless
frequency ⌦ defined in Eq. (2.11).

energy resolution. Typically, we are interested in scenarios where !�t0 ⇠ 1. Given
that any reasonable detector has an energy (or frequency) uncertainty �! ⌧ !, the
Heisenberg uncertainty principle tells us that the coherence time �t ⇠ �!�1 is much
larger than �t0.

Because the conditions (1) and (2) are never strictly satisfied, we are forced to relax some of
the approximations made above. We will do so in the following subsections.

2.2 Point-like Source and Lens in the Wave Optics Regime

Gravitational lensing outside the geometric optics regime is not an unusual scenario. For
example, it has been mentioned in [36] that the microlensing measurements of HSC Subaru
are partially in the physical (wave) optics regime, invalidating the constraints on primordial
black holes published in ref. [4] for masses below 10

�11M�. To the best of our knowledge,
the correct interpretation of the HSC constraints in this mass range is still missing in the
literature. Also, practically all discussion of lensing of gravitational waves includes wave
optics effects [37] (for recent related works see e.g. [38–40]). Finally, it was noticed already in
the 1990s that the geometric optics approximation is typically violated in femtolensing [34].

In the physical optics regime, lensing is characterized by a magnification function F (~y;!),
which is defined as the ratio �

L

/�, where �
L

and � are the electromagnetic wave amplitudes
with and without lensing, respectively. The magnification of the signal intensity is therefore

µ = |F |2 , (2.14)

The magnification function is given by [41]

F (~y;!) =
⌦

2⇡i

Z
d2~x ei!�t(~x,~y) . (2.15)
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Figure 1. The diffractive lensing signal as a function of photon frequency. The vertical axis displays
the ratio of the observed intensity with and without lensing, the bottom horizontal axis shows the
dimensionless frequency defined in eq. (2.8), and the top horizontal axis translates ⌦ into a physical
frequency for a specific choice of lens mass and redshift. We compare two different angular separations
between the lens and the source (red vs. green lines), and we also compare the geometric optics
approximation (dashed) to a full wave optics calculation (solid), concluding that, for our purposes
(⌫ ⇠ GHz) geometric optics is always a valid approximation. SS: This is an old figure which I

just put to compile. Must be replaced by the new one.

1000 keV, is most sensitive to lenses between 10�17 M� and 10�14 M�. For fast radio bursts,
with typical photon energies of order 10�6 eV (frequencies of order GHz) lens masses between
10�4 M� and 0.1M� will be relevant. This mass range extends to higher masses than one
might naively expect thanks to the excellent frequency resolution of radio telescopes, which
allows us to resolve the interference pattern even if ! �t is significantly larger than one.

Let us mention some caveats to the discussion above. First, we note that at ! �t ⇠ 1 the
geometric optics approximation with two well-defined lensed images breaks down. One needs
to take into account the wave optics effects [40] and find the observed signal by evaluating
the full Fresnel integral over the lens plane. The observed magnification is then given by

µ =

����
⌦

(2⇡i)✓2E

Z
d2~✓ ei!�t(~✓)

����
2

, (2.9)

where �t is given by eq. (2.1). For a point source and a point-like lens, eq. (2.9) can be evalu-
ated analytically [26], but in the general case the integral needs to be performed numerically.
We compare the magnification in the geometric optics approximation and using a full wave
optics calculation in fig. 1. As expected, the effects of wave optics are most pronounced only
at small frequencies, ⌦ . 1. The typical frequencies at which we observe FRBs are around
1GHz, which for lens masses & 10�4 M� corresponds to ⌦ � 1. In this regime, fig. 1 shows
that wave optics corrections are negligible.

A second potential caveat is related to the angular size of the source. If the latter is too
large, but unresolved by the observer, the integral over signals from different regions in the

4We work in the units c = ~ = 1.
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Figure 3. True magnification vs. geometric optics approximation for the self-similar infall profile
⇢(r) ⇠ r�9/4 as a function of the dimensionless frequency ⌦ = !�t0, see eq. (2.10). We see that, for
impact parameter y ⌘ �/✓0 = 1, the picture is qualitatively quite similar to that for a point-like mass.
At larger y, however, the geometric optics approximation significantly underestimates the magnitude
of the lensing effect in a wide frequency range.

higher energies by a factor

m(✓0)

Mcusp
=

✓
✓0DL

r0

◆3/4

. (2.29)

compared to the ones in fig. 1. For z
S

= 1 and z
L

= 0.5, this becomes

m(✓0)

Mcusp
= 0.037⇥

✓
1.3⇥ 10

10 cm
r0

◆6/5✓ Mcusp

10

�15M�

◆3/5

. (2.30)

This estimate is indeed in good agreement with the shift observed in the plots.

3 Revision of Current Bounds and Sensitivity Estimates

In this section, we will revisit the femtolensing bounds from ref. [27] by considering wave
optics corrections (see section 2.2) as well as the non-pointlike nature of the GRB sources
(see section 2.3). From Fig 1 we expect that wave optics effects will modify femtolensing
bounds on point-like masses by at most a few tens of per cent compared to the geometric
optics approximation. The finite size of the sources, however, is expected to lead to much
more dramatic modifications. As the size a

S

of the emission region in a GRB is very uncertain
(see appendix A), we will investigate the dependence of our results on a

S

. We will find that
only if a

S

. 10

8 cm, current data is able to set meaningful limits. This is true for point-like
lenses such as primordial black holes, but also for extended lenses like axion miniclusters.
Unfortunately the assumption a

S

. 10

8 cm is not realistic.
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Figure 2. Dependence of magnification on the size of the source. Here �y is the angular size of
the source in units of the Einstein angle, see eq. (2.17). The dimensionless frequency ⌦ is defined in
eq. (2.11). The lens is assumed to be point-like.

To take the finite size of the source into account, we follow the formalism of ref. [30].
The observed magnification is then

µ̄ =

R
d2yW (~y;�

y

)µ(~y;⌦)R
d2yW (~y;�

y

)

, (2.18)

where W (y;�
y

) is a window function that describes the intensity profile of the emission and
µ(~y;⌦) is the magnification for a point-like source, see eqs. (2.14), (2.15). In principle W (~y)
can be any well-behaved function that acts as a mask of size �

y

. We choose it to be a Gaussian,

W (y;�
y

) = e�|~y�~y0|2/2�2
y . (2.19)

Hereafter, we will use ~y0 to denote the location of the center of the emission. For Gaussian
W (y;�

y

) and a radially symmetric lens, the weighted magnification reads

µ̄ =

e�y

2
0/2�

2
y

�2
y

Z 1

0
dy y e�y

2
/2�2

y I0

✓
y0 y

�2
y

◆
µ(y;⌦) (2.20)

where I0(x) is the modified Bessel function of the first kind.
We illustrate the effect of the non-zero source size in fig. 2. Clearly, the effect is mild

for �
y

⌧ 1, however even for these values of the emission size the oscillations in energy space
are damped at high frequencies. As the emission size grows, oscillations are damped more
strongly, until they eventually disappear at �

y

⇠ 1.
Interestingly, we observe that, even at large emission size �

y

& 1, the asymptotic µ̄
at high frequency is larger than the value of µ̄ at low frequency. That is, even though
the interference fringes are washed out, a smooth step-like feature survives. This can be
understood as follows. At ⌦ ! 1 the point-source magnification µ(y;⌦) is well described
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Application to GRBs (femtolensing)
Gould (1992) 

Stanek, Paczynski, Goodman (1993)

Broad spectrum from 10 keV to 10 MeV

Duration Short GRBs from 0.1 to 2 s, Long GRBs from 2 to 200 s

E�t � 1 potentially sensitive to 10�17M� < M < 10�14M�
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Figure 4. Simulated GRB spectra based on the BAND model with parameters A =

14.08 counts sec�1 cm�2 keV�1, E0 = 160 keV, ↵1 = �0.9, and ↵2 = �2.5. We compare the unlensed
spectrum (black) to the predicted spectra in the presence of a PBH lens with mass M = 10

�15 M�
and impact parameter y = 0.5. Wave optics effects as well as the finite size of the GRB emission
region are taken into account, where for the latter we use either aS = 10

8 cm (blue) or 10

9 cm (or-
ange). The source is assumed to be located at redshift zS = 1. For highly optimistic (small) aS , a
pronounced interference pattern is visible almost independently of the position of the lens, while for
more realistic (larger) aS , only a lens rather close to the observer may lead to an observable effect.
The gray band drawn around the unlensed data represents the statistical uncertainty.The black dotted
gaussians show the detector response assuming the FERMI energy resolution as well as the resolution
of eq. (3.4) that we optimistically assume for future detectors. The signal that one observes in the
detector would be a convolution of the detector response with the line simulated GRB spectrum.

uncertainty is set to 0% or 10% instead.) The vector ~µ
b

contains the relevant parameters
of the background model (four for the BAND and BKN models, three for the power law
model with exponential cutoff). To be conservative, we minimize over ~µ

b

, i.e. we choose the
background parameters that best fit the data. The vector ~µ

s

contains the parameters of the
lens, namely its mass M , its redshift z

L

, and its normalized impact parameter in the lens
plane y = �/✓

E

. Thus, L0 compares the unlensed spectrum to the lensed spectrum for fixed
lens and source parameters. Note that we can use Gaussian rather than Poisson statistics
here because the number of photon events per bin is large.

We can define a lensing cross section �(D
L

) = ⇡(ymax✓EDL

)

2, where ymax is the maximal
normalized distance from the lens to observer–source line of sight that still leads to a sizable
lensing signal. (A sizable signal is defined as a signal that can be distinguished, at a given
confidence level (CL) from an unlensed signal.) In other words, ymax is obtained by solving

�2 log

✓
L0(~µs

|y = ymax)

L0(~µs

|y = 1)

◆
= ↵ , (3.6)

where ↵ is the quantile one of the �2 distribution with one degree of freedom corresponding
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Are GRBs compact enough ?

A The size of the prompt emission region in GRBs

In this appendix we discuss the transverse size of the �-ray emitting regions in GRBs, which,
as we have seen in section 2.3, plays a crucial role in the study of femtolensing. We will review
estimates for the size of the emission region based on measurements of the variability time
scale, and we will also discuss the lower bound following from the required transparency of
the emission region to �-rays.

It is believed that the prompt �-emission of GRBs is produced by electrons and positrons
accelerated in relativistic shock waves. The non-thermal �-ray spectrum implies that the
emission region must be optically thin. To reconcile this requirement with the observed
energetics of the bursts, the bulk Lorentz factor of the �-ray emitting material must be large,
� & 100 [62].

We etsimate the transverse size of the emission region following the same approach as
Ref. [29]. Consider a blob of material of size a

S

moving with velocity v at an angle ✓obs to
the observer’s line of sight. In the rest frame of the blob the minimal variability time scale of
the emission is simply given by the light-crossing time,

ˆtvar ⇠ a
S

/c . (A.1)

The observed variability time tvar is related to ˆtvar by the relativistic Doppler formula,

tvar = (1 + z
S

)

✓
1� v

c
cos ✓obs

◆
� ˆtvar , (A.2)

where � ⌘ �
1� (v/c)2

��1/2 and we have taken into account the cosmological redshift of the
source. Due to the relativistic beaming effect, we have ✓obs ⇠ 1/� . Combining this with
eqs. (A.1) and (A.2) one obtains the estimate

a
S

⇠ c� tvar

1 + z
S

' 10

11 cm
1 + z

S

⇥
✓

tvar

0.03 sec

◆✓
�

100

◆
. (A.3)

The minimal variability time scales for various GRBs have been determined in ref. [42].
They lie within the range tsGRB

var ⇠ (0.01÷ 0.1) sec for short GRBs and tlGRB
var ⇠ (0.1÷ 1) sec

for the long ones. These results are consistent with the earlier estimates of ref. [29] that
give average variability time scales tvar of 0.036 sec and 1.2 sec for short and long GRBs,
respectively. We see that for a typical short GRB with z ⇠ 1, tvar ⇠ 0.03 sec, and � ⇠ O(100),
the transverse size is,

a
S

⇠ 10

11 cm . (A.4)

For long GRBs this estimate becomes an order of magnitude larger.9
In the above estimates we adopted the standard picture of a GRB with a relativistic

jet of �-ray emitting material pointing towards the observer. One may wonder how the
reasoning is modified in the case of off-axis observation, like in the recent GRB 170817A

9Note that Ref. [42] derives also the distribution of the emission radii Rem, i.e. the distance from the GRB
central engine at which �-rays are emitted. The central value of this distribution is Rem ⇠ 3 ⇥ 1013 cm
(1014 cm) for short (long) GRBs. Due to relativistic beaming, the transverse size of the patch visible by
an observer on Earth is related to this distance as aS ⇠ Rem/� . Assuming � ⇠ O(100), this again gives
aS ⇠ 1011 cm (1012 cm) for short (long) GRBs.
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respectively. We see that for a typical short GRB with z ⇠ 1, tvar ⇠ 0.03 sec, and � ⇠ O(100),
the transverse size is,
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11 cm . (A.4)

For long GRBs this estimate becomes an order of magnitude larger.9
In the above estimates we adopted the standard picture of a GRB with a relativistic

jet of �-ray emitting material pointing towards the observer. One may wonder how the
reasoning is modified in the case of off-axis observation, like in the recent GRB 170817A

9Note that Ref. [42] derives also the distribution of the emission radii Rem, i.e. the distance from the GRB
central engine at which �-rays are emitted. The central value of this distribution is Rem ⇠ 3 ⇥ 1013 cm
(1014 cm) for short (long) GRBs. Due to relativistic beaming, the transverse size of the patch visible by
an observer on Earth is related to this distance as aS ⇠ Rem/� . Assuming � ⇠ O(100), this again gives
aS ⇠ 1011 cm (1012 cm) for short (long) GRBs.
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A The size of the prompt emission region in GRBs
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Fig. 5.— Left panel: the histograms of �t
min

with measurements (blue) and for GRBs allowing for upper limits only (red).
Middle and right panels: the cumulative histograms of bursts in the observer and source frames, respectively. The KM estimation
curve with 1� error region around the curve is shown in these panels. The dotted lines correspond to the minimum timescale
of the lowest 10% and 50% of bursts, shown for the short and long-duration GRBs, separately. Sub-panels show the locations
of detections and upper-limits, as in Figure 2. For long-duration (short-duration) GRBs, we have 421 (107) measurements and
334 (76) upper limits in the observer frame and 24 (3) measurements and 18 (1) upper limits in the source frame.

observable time (�t

S/N) versus T

90

. Values for T

90

are
taken from Table 7 of von Kienlin et al. (2014).
We first note from the colors in Figure 6 that GRBs

with �t

min

close to T

90

tend to have flux variations of
order unity. These are bursts with simple, single-pulse
time profiles. As can be seen from the range of point sizes
in Figure 6, most are not simply low S/N events where
fine time structure cannot be observed. Also, we see that
there are GRBs with both high and low S/N which have
complex time-series (�t

min

⌧ T

90

). Based on the point
sizes, the short-timescale variation have higher ratio of
�t

min

/�t

S/N for the short-duration GRBs of the simi-
lar �t

min

in comparison with that of the long-duration
GRBs. Short-duration GRBs tend to have a higher �X,�t
for the similar value of �t

min

compared with the long-
duration GRBs.
These findings are all consistent with the similar results
explained in Paper I; although we have a better ratio of
short-duration GRBs to long-duration GRBs, here.
From a Kendall’s ⌧ -test (Kendall 1938), we find only

marginal evidence that �t

min

and T

90

are correlated
(⌧k = 0.33, 11� above zero). The �t

min

values in Figure
6 are bound from above by T

90

, and they do not strongly
correlate with T

90

within the allowed region of the plot.
In Paper I, we studied this relation for the entire sample
of Swift GRBs and found only a marginal evidence that
�t

min

and T

90

are correlated (⌧k = 0.38, 1.5�). Even
when we utilized the robust duration estimate T

R45

(Re-
ichart et al. 2001) in place of T

90

no significant correlation
was found (⌧k = 0.6, 2.4�). If we perform a truncated
Kendall’s ⌧ test which only compares GRBs above one-
another’s threshold (Lloyd-Ronning & Petrosian 2002),
the correlation strength drops precipitously (⌧k = 0.06,
1.4�). We, therefore, believe there is no strong evidence
supporting a real correlation between �t

min

and T

90

.

3.4. The Dependence of �t

min

on Spectral Hardness

We investigate here how a burst’s spectral hardness
impacts its minimum variability timescale. We define

Fig. 6.— The GRB minimum timescale, �t
min

, plotted ver-
sus the GRB T

90

duration. Circles (diamonds) represent long-
duration (short-duration) GRBs. The point colors represent
the flux variation level (�X,�tmin) at �t

min

. Also plotted as
a curved line is the typical minimum observable timescale,
�t

S/N, as a function of T
90

. The symbol sizes are propor-
tional to the ratio of �t

min

/�t
S/N for each GRB. The dashed

line shows the equality line.

the hardness ratio (HR) as the total counts in the hard
composite channel (89–1000 keV, our combined channels
3 and 4) divided by the total counts in the soft com-
posite channel (8–89 keV, our channels 1 and 2). We
plot in Figure 7 (top panel) the ratio of �t

min

for these
two composite channels against the HR of the two corre-
sponding bandpasses. GRBs with harder spectra tend to
have a lower �t

min

ratio, by as much as a factor ⇡ 3, for

Variabilities of GRBs
Golkhou et al. (2015)

• majority of GRBs have 

• however, 10% have                        . Is it possible that there are some 
with                       ?  

aS � 1010cm

aS � 1011cm� rE � 109cm

aS � 109cm
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Figure 5. Sensitivity of femtolensing searches to the primordial black hole contribution ⌦PBH/⌦DM
to the overall DM density in the Universe. We show the projected sensitivity for different assumptions
on the number of suitable GRBs with well-measured redshifts in the data sample. We also illustrate
the dependence on the size aS of the emission region of a typical GRB, where aS = 10

8 cm should be
considered a highly optimistic value, and aS = 10

9 cm an optimistic but possible value. The colored
bands indicate the impact of systematic effects (uncorrelated random fluctuations in each bin). We
use the BAND model for the GRB spectrum throughout. For other spectral models, limits would
change by not more than a few tens of percent. We have assumed the redshift of all GRBs in the
sample to be zS = 1.

overly optimistic. If a
S

is only one order of magnitude larger (which is still very optimistic),
no limit can be set.

This may change in the future if the available sample of GRBs is significantly extended.
With 100 GRBs, sensitivity to an O(30%) fraction of PBHs can be achieved for a

S

⇠ 10

9 cm.
The sensitivity would improve to ⌦PBH/⌦DM ⇠ 0.06 if a

S

⇠ 10

8 cm. Our conclusions are
essentially independent of the choice of GRB model (BAND vs. BKN vs. power law with
exponential cutoff). They depend somewhat on the assumed systematic uncertainty, with
the sensitivity deteriorating by at most a factor of two if the assumed systematic error is
increased from 0% to 10%. Note that we have very conservatively assumed systematic errors
to be completely uncorrelated between energy bins.

In fig. 6, we put our projected constraints into a broader context by comparing to other
limits on PBHs. We see that future femtolensing constraints, albeit weak, may cover a mass
range that is otherwise inaccessible and where viable PBH DM could exist.

While the projected limits shown in figs. 5 and 6 apply only to PBH DM, we can use the
arguments given at the end of section 2.4 as a starting point for estimating also the sensitivity
to other compact DM structures. For UCMHs, we have argued above that the interference
fringes are shifted to higher energies compared to the PBH case, with the magnitude of the
shift, m(✓0)/Mcusp, given by eqs. (2.29) and (2.30) for UCMHs with ⇢(r) / (r0/r)9/4. We

– 17 –

We need to better understand GRB sizes…



Application to FRBs
Zheng et al. (2014) 

Eichler (2017)

Typically at 400 MHz to 1.5 GHz, but also up to ~ 10 GHz

Duration ~ ms

potentially sensitive to��t � 1 10�4M� < M < 0.1M�

No problems with the size of the source (Einstein radius                 )10�13cm



Microstructure revealed in FRB170827 5

Figure 2. FRB170827 coherently dedispersed with dispersion measure = 176.8 pc cm�3. Structure in FRB170827 is seen at the highest
available resolution of the instrument at 10.24 µs and 97.66 kHz. The bottom-left panel shows the dynamic spectrum of the event. It
shows a region of enhanced emission between 841 and 843 MHz, striations on a scale of 100-200 kHz and “spiky” emission features which
can be brighter than 1 kJy. The upper panel shows the temporal profile with three major features – a sharp leading feature, a weak
intermediate feature and a broad trailing feature. The right panel shows the time-integrated spectrum of the event as S/N per channel,
further illustrating prominent structure on 100-200 kHz scales.

where �S(⌫) = S(⌫)� S̄, with S̄ being the mean flux den-
sity, and N the number of frequency channels. The zero lag
value, associated with self noise, was excised from the auto-
covariance function. The ACF was then normalised by its
maximum and fitted by a Gaussian function of the form:

⇠(�⌫) = exp
h
� b�⌫2

i
. (3)

The constructed ACF is shown in Fig. 4. The decorre-
lation bandwidth, �⌫d, is usually defined as the frequency
lag where the ACF decays to half power (Cordes 1986). The
computed �⌫d ⇠ 1.5 MHz is consistent with what is ex-
pected along the line of sight, as shown by the NE2001
model, where �⌫d,NE2001 ⇠ 0.8 MHz at 835 MHz. In Fig. 4,
we show the cross-covariance function (CCF) of the spectra
of the leading and trailing features of the temporal profile
(see § 4.2). The CCF peaks at zero-lag, and shows only mod-
est asymmetry that is consistent with arising from sample
variance and noise. If the scintillation patterns are identical
between the two feature windows, the ACF and CCF would
have the same shape (Cordes et al. 1983). We conclude that

the dynamic spectrum of FRB170827 is consistent with aris-
ing from scintillation.

Another notable feature of the dynamic spectrum of
FRB170827 is the 100-200 kHz wide striations seen across
the pulse profile. These cannot be explained by a passage
through the ISM, as they are ⇠ an order of magnitude nar-
rower than is expected for the line of sight for the NE2001
model. Below, we consider the possibility that they arise in
a second scattering screen, well outside the Milky Way.

Interstellar scintillation can amplify pulsars and FRBs
that are otherwise beneath detection thresholds and make
them detectable. FRB170827 was well above our detection
threshold however, and even saturated our detector system
in some channels prior to analysis of the voltage data. A
fainter version of FRB170827 might have only been visi-
ble across ⇠ 2 MHz, and may have been overlooked by our
search algorithms. Searches for narrow-band FRBs may un-
veil more events if they can still be di↵erentiated from ter-
restrial interference.

MNRAS 000, 1–10 (2018)

Farah et al. (2018)

This is not lensing 
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• phase correlation length          : �(�(x + rdi�) � �(x))2� = 1rdi�

rdi� < rF �
�

DScO/� strong scintillation

• diffraction angle �di� =
1

�rdi�

• the light is collected from regions of size rref = �di�DScO

rdi� � �6/5 for Kolmogorov spectrum of density inhomogeneities

includes many incorrelated patches 
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Figure 3. A fast radio burst gravitationally lensed by a compact object. The superposition of signals
from the two images passes through scintillating medium before it reaches the observer.

A scintillation screen between the lens and the observer additionally imparts random noise
on the lensed signal. The observed signal from a distant source, after passing a gravitational
lens (e.g. a PBH) and then a scintillation screen (e.g. due to the Milky Way’s ISM), can be
written as

fobs(!) =
!fin(!)

2⇡iDScO

Z
d2x ei�(!,~x)

�
Aei!�tA(~x) + Bei![�t+�tB(~x)]

�
. (3.9)

Here, the terms �tA,B(~x) account for the variation of the lensing-induced time delays with ~x.
This variation originates from the fact that the lens is seen under a different angle relative to
the source from different points on the screen. Taking the square of this expression we obtain
the intensity spectrum,

|fobs(!)|2 = |fin(!)|2
⇣
|A(!)|2 + |B(!)|2 + A(!)B⇤(!) ei!�t + A⇤(!)B(!) e�i!�t

⌘
, (3.10)

where

A(!) =
A !

2⇡iDScO

Z
d2x ei(�(!,~x)+!�tA(~x)) (3.11)

and similarly for B(!). We observe the presence of interference terms characteristic of the
diffractive lensing. If the amplitudes A, B were constant, these terms would lead to regular
periodic modulations of the observed intensity, as discussed in section 2. Scintillation compli-
cates the picture by making the amplitudes frequency dependent. Nevertheless, the lensing
signal can still be extracted if the product of the amplitudes A(!)B⇤(!) contains a slowly
varying component that survives upon averaging over frequency intervals �! & (�t)�1. In-
deed, in this case the Fourier transform of the spectrum (3.10) will have a peak coresponding
to the lensing time delay �t.

To estimate the size of the slowly varying component we consider the product of the
amplitudes smeared with a Gaussian function of width �!,

Q(!, �!) =

Z
d!0

p
2⇡�!

e�
(!0�!)2

2�!2 A(!0)B⇤(!0) . (3.12)

Its characteristic value is given by the ensemble average h|Q(!, �!)|2i over random realiza-
tions of the scintillation phase. This average involves the correlator of four amplitudes,

hA⇤(!0)B(!0)A(!00)B⇤(!00)i . (3.13)
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Figure 3. A fast radio burst gravitationally lensed by a compact object. The superposition of signals
from the two images passes through scintillating medium before it reaches the observer.

A scintillation screen between the lens and the observer additionally imparts random noise
on the lensed signal. The observed signal from a distant source, after passing a gravitational
lens (e.g. a PBH) and then a scintillation screen (e.g. due to the Milky Way’s ISM), can be
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Here, the terms �tA,B(~x) account for the variation of the lensing-induced time delays with ~x.
This variation originates from the fact that the lens is seen under a different angle relative to
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diffractive lensing. If the amplitudes A, B were constant, these terms would lead to regular
periodic modulations of the observed intensity, as discussed in section 2. Scintillation compli-
cates the picture by making the amplitudes frequency dependent. Nevertheless, the lensing
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Here, the terms �tA,B(~x) account for the variation of the lensing-induced time delays with ~x.
This variation originates from the fact that the lens is seen under a different angle relative to
the source from different points on the screen. Taking the square of this expression we obtain
the intensity spectrum,

|fobs(!)|2 = |fin(!)|2
⇣
|A(!)|2 + |B(!)|2 + A(!)B⇤(!) ei!�t + A⇤(!)B(!) e�i!�t

⌘
, (3.10)

where

A(!) =
A !

2⇡iDScO

Z
d2x ei(�(!,~x)+!�tA(~x)) (3.11)

and similarly for B(!). We observe the presence of interference terms characteristic of the
diffractive lensing. If the amplitudes A, B were constant, these terms would lead to regular
periodic modulations of the observed intensity, as discussed in section 2. Scintillation compli-
cates the picture by making the amplitudes frequency dependent. Nevertheless, the lensing
signal can still be extracted if the product of the amplitudes A(!)B⇤(!) contains a slowly
varying component that survives upon averaging over frequency intervals �! & (�t)�1. In-
deed, in this case the Fourier transform of the spectrum (3.10) will have a peak coresponding
to the lensing time delay �t.

To estimate the size of the slowly varying component we consider the product of the
amplitudes smeared with a Gaussian function of width �!,

Q(!, �!) =

Z
d!0

p
2⇡�!

e�
(!0�!)2

2�!2 A(!0)B⇤(!0) . (3.12)

Its characteristic value is given by the ensemble average h|Q(!, �!)|2i over random realiza-
tions of the scintillation phase. This average involves the correlator of four amplitudes,

hA⇤(!0)B(!0)A(!00)B⇤(!00)i . (3.13)

– 9 –

Disentangling lensing from scintillation

}
DScO

variation of time-delay over the screen

}
DScO
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from the two images passes through scintillating medium before it reaches the observer.

A scintillation screen between the lens and the observer additionally imparts random noise
on the lensed signal. The observed signal from a distant source, after passing a gravitational
lens (e.g. a PBH) and then a scintillation screen (e.g. due to the Milky Way’s ISM), can be
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Here, the terms �tA,B(~x) account for the variation of the lensing-induced time delays with ~x.
This variation originates from the fact that the lens is seen under a different angle relative to
the source from different points on the screen. Taking the square of this expression we obtain
the intensity spectrum,
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and similarly for B(!). We observe the presence of interference terms characteristic of the
diffractive lensing. If the amplitudes A, B were constant, these terms would lead to regular
periodic modulations of the observed intensity, as discussed in section 2. Scintillation compli-
cates the picture by making the amplitudes frequency dependent. Nevertheless, the lensing
signal can still be extracted if the product of the amplitudes A(!)B⇤(!) contains a slowly
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To estimate the size of the slowly varying component we consider the product of the
amplitudes smeared with a Gaussian function of width �!,
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(!0�!)2

2�!2 A(!0)B⇤(!0) . (3.12)

Its characteristic value is given by the ensemble average h|Q(!, �!)|2i over random realiza-
tions of the scintillation phase. This average involves the correlator of four amplitudes,

hA⇤(!0)B(!0)A(!00)B⇤(!00)i . (3.13)
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Figure 3. A fast radio burst gravitationally lensed by a compact object. The superposition of signals
from the two images passes through scintillating medium before it reaches the observer.
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Figure 4. Observability of FRB lensing by compact dark matter objects as a function of the lens
mass M and of the diffractive scale corresponding to interstellar scintillation in the Milky Way. We
assume an FRB at a comoving distance of 1 Gpc, and a lens at 0.2 Gpc. The angular separation
between the lens and the (unlensed) source, normalized to the Einstein angle, is y = �/✓E = 0.5. We
consider 1 GHz radio waves, which are perturbed by a scintillation screen at 1 kpc form the observer.
SS: change !scint

dec

to !
dec

(b) �t � (!dec)
�1, ! ✓E rref � 1 (region below the blue, but above the red line in fig. 4).

Variation of the lensing phase over the scintillation screen is fast, so the two lensed
images are distorted incoherently. Nevertheless, the amplitudes A(!) and B(!) vary
slowly as functions of ! and a clear lensing signal still survives both in the transfer
function and in the autocorrelation function. This is illustrated in the second row of
panels in fig. 5.

(c) (!dec)
�1 � �t, 1 � ! ✓E rref (region below the red, but above the blue line in fig. 4).

When the time delay �t between the two lensed images is shorter than the inverse
of the decorrelation bandwidth !dec, the scintillation factor ei�(!,~x) in eq. (3.9) varies
much faster than the lensing factor ei!�t. On the other hand, we can neglect the
variation of the lensing phase over the screen, ! �t(~x), so the two lensed images are
distorted coherently. The lensing signal will be discernible as a modulation of the
envelope of an otherwise chaotic spectrum. Indeed, the panels in the third row in fig. 5
illustrate this behavior: we observe high-frequency scintillation noise, superimposed on
regular periodic oscillations due to lensing. As expected, the signal disappears from the
autocorrelation function, but remains in the Fourier transform of the transfer function.

(d) (!dec)
�1 � �t, ! ✓E rref � 1 (region below the red and blue lines in fig. 4). In this case,

the fast variations of the scintillation factor ei�(!,~x) combines with incoherent distortion
of the images. The amplitude A⇤(!)B(!) of the interference term in eq. (3.10) does not
contain a slowly varying component and the lensing signal is strongly suppressed. (SS:
We do not see it in the bottom panels of fig. 5 — why ?)

We conclude that a lensing signal is in principle observable in regimes (a), (b) and (c), but
unobservable in regime (d).
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In the opposite regime a fast lensing-phase variation leads to strong suppression of the corre-
lation between the amplitudes. Thus, in general we can write,

hA⇤(!)B(!)i = AB · U(! �✓ rref) , (3.19)

where the function U is of order unity when its argument is less than 1 and quickly vanishes
outside this range.6

We now return to the quantity (3.12). Collecting our previous results we obtain,

h|Q(!, �!)|2i = A2B2

⇢ Z
d!�

2
p

⇡�!
e�

!2
�

4�!2
��C0(!�)

��2 +
��Ū(! �✓ rref)

��2
�

, (3.20)

where we have denoted by Ū the correlator (3.19) smeared over a range of frequencies �!.
Extraction of the lensing signal is possible whenever either of the two terms in brackets is
sizable. If �! is smaller than the decorrelation bandwidth, the autocorrelation function in
the first term can be replaced by unity and the whole integral equals 1. In the opposite regime
�! � !dec it becomes suppressed as !dec/�!. Recalling that we want the averaging interval
�! to be at least as large as (�t)�1, we conclude that the first term in eq. (3.20) is significant
for long lensing delays �t � (!dec)

�1. The size of the second term in eq. (3.20) is controlled
by the angular separation between the lensed images. Given that the characteristic size of
�✓ is set by the Einstein angle ✓E , we can rephrase the condition for this term to be large as
! ✓E rref < 1. In this way we arrive to four possible scenarios, which are illustrated in fig. 4:

(a) �t � (!dec)
�1, 1 � ! ✓E rref (region above the red and blue lines in fig. 4). In this case,

the lensing phase !�t varies much faster with frequency than the scintillation phase
�(!, ~x), and it does not change substantially across the scintillation screen. Therefore,
a clear lensing pattern can be observed in the form of rapid periodic variations of
the radiation intensity with !. The envelope of the lensing wiggles in the frequency
spectrum is modulated over frequency intervals � (�t)�1 by scintillation effects and
by the variation of the lensing phase across the screen.

This behavior is clearly visible in the top panels of fig. 5. In the left part of this figure,
we show the transfer function

|T (⌫)|2 ⌘
����
fobs(⌫)

fin(⌫)

����
2

, (3.21)

while in the middle part, we plot the autocorrelation function of the normalized signal
amplitude,

C(d⌫) ⌘
��hT ⇤(⌫) T (⌫ + d⌫)i��

h|T (⌫)|2i . (3.22)

Here ⌫ = !/(2⇡) is the radiation frequency and averaging is performed over a large
frequency interval. In the right part of fig. 5, we show the Fourier transform of |T (⌫)|2.
As expected, the lensing signal is clearly visible, with its envelope only marginally
modulated due to scintillation.

6Under general assumptions about the statistical properties of the scintillation phase, one can show that
U(z) is exponentially suppressed at z > 1.
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In the opposite regime a fast lensing-phase variation leads to strong suppression of the corre-
lation between the amplitudes. Thus, in general we can write,

hA⇤(!)B(!)i = AB · U(! �✓ rref) , (3.19)

where the function U is of order unity when its argument is less than 1 and quickly vanishes
outside this range.6

We now return to the quantity (3.12). Collecting our previous results we obtain,

h|Q(!, �!)|2i = A2B2
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where we have denoted by Ū the correlator (3.19) smeared over a range of frequencies �!.
Extraction of the lensing signal is possible whenever either of the two terms in brackets is
sizable. If �! is smaller than the decorrelation bandwidth, the autocorrelation function in
the first term can be replaced by unity and the whole integral equals 1. In the opposite regime
�! � !dec it becomes suppressed as !dec/�!. Recalling that we want the averaging interval
�! to be at least as large as (�t)�1, we conclude that the first term in eq. (3.20) is significant
for long lensing delays �t � (!dec)

�1. The size of the second term in eq. (3.20) is controlled
by the angular separation between the lensed images. Given that the characteristic size of
�✓ is set by the Einstein angle ✓E , we can rephrase the condition for this term to be large as
! ✓E rref < 1. In this way we arrive to four possible scenarios, which are illustrated in fig. 4:

(a) �t � (!dec)
�1, 1 � ! ✓E rref (region above the red and blue lines in fig. 4). In this case,

the lensing phase !�t varies much faster with frequency than the scintillation phase
�(!, ~x), and it does not change substantially across the scintillation screen. Therefore,
a clear lensing pattern can be observed in the form of rapid periodic variations of
the radiation intensity with !. The envelope of the lensing wiggles in the frequency
spectrum is modulated over frequency intervals � (�t)�1 by scintillation effects and
by the variation of the lensing phase across the screen.

This behavior is clearly visible in the top panels of fig. 5. In the left part of this figure,
we show the transfer function

|T (⌫)|2 ⌘
����
fobs(⌫)

fin(⌫)

����
2

, (3.21)

while in the middle part, we plot the autocorrelation function of the normalized signal
amplitude,

C(d⌫) ⌘
��hT ⇤(⌫) T (⌫ + d⌫)i��

h|T (⌫)|2i . (3.22)

Here ⌫ = !/(2⇡) is the radiation frequency and averaging is performed over a large
frequency interval. In the right part of fig. 5, we show the Fourier transform of |T (⌫)|2.
As expected, the lensing signal is clearly visible, with its envelope only marginally
modulated due to scintillation.

6Under general assumptions about the statistical properties of the scintillation phase, one can show that
U(z) is exponentially suppressed at z > 1.
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When the time delay �t between the two lensed images is shorter than the inverse
of the decorrelation bandwidth !dec, the scintillation factor ei�(!,~x) in eq. (3.9) varies
much faster than the lensing factor ei!�t. On the other hand, we can neglect the
variation of the lensing phase over the screen, ! �t(~x), so the two lensed images are
distorted coherently. The lensing signal will be discernible as a modulation of the
envelope of an otherwise chaotic spectrum. Indeed, the panels in the third row in fig. 5
illustrate this behavior: we observe high-frequency scintillation noise, superimposed on
regular periodic oscillations due to lensing. As expected, the signal disappears from the
autocorrelation function, but remains in the Fourier transform of the transfer function.

(d) (!dec)
�1 � �t, ! ✓E rref � 1 (region below the red and blue lines in fig. 4). In this case,

the fast variations of the scintillation factor ei�(!,~x) combines with incoherent distortion
of the images. The amplitude A⇤(!)B(!) of the interference term in eq. (3.10) does not
contain a slowly varying component and the lensing signal is strongly suppressed. (SS:
We do not see it in the bottom panels of fig. 5 — why ?)

We conclude that a lensing signal is in principle observable in regimes (a), (b) and (c), but
unobservable in regime (d).

– 12 –

Figure 4. Observability of FRB lensing by compact dark matter objects as a function of the lens
mass M and of the diffractive scale corresponding to interstellar scintillation in the Milky Way. We
assume an FRB at a comoving distance of 1 Gpc, and a lens at 0.2 Gpc. The angular separation
between the lens and the (unlensed) source, normalized to the Einstein angle, is y = �/✓E = 0.5. We
consider 1 GHz radio waves, which are perturbed by a scintillation screen at 1 kpc form the observer.
SS: change !scint

dec

to !
dec

(b) �t � (!dec)
�1, ! ✓E rref � 1 (region below the blue, but above the red line in fig. 4).
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Figure 5. From top to bottom, we illustrate the four qualitatively different scintillation/lensing
regimes discussed in the main text. The panels on the left show in each case the transfer function
|T (⌫)|2, that is the observed radiation intensity, normalized to the radiation intensity without lensing
and scintillation (see eq. (3.21)). In the middle panels we plot the autocorrelation function, eq. (3.22).
The panels on the right contain the Fourier transform of |T (⌫)|2, with the lensing peak highlighted by
a vertical dotted line. In all panels, the horizontal axis is normalized in terms of the lensing time delay
�t. The plots have been produced using the simulation code described in section 4 [43], assuming an
interstellar scintillation screen at 1 kpc, and a lens at DL = 0.5DS , y = �/✓E = 0.5. SS: change in

the label of the middle panels r(⌫) to C(d⌫)

However, there are practical considerations that may render the signal unobservable
even in the regimes (a), (b), (c). The distance between subsequent lensing wiggles in the
spectrum, (�t)�1, should be significantly larger than the instrumental frequency resolution,
but significantly smaller than the instrumental bandwidth. The first condition is violated
for too large lens masses, the second one for lens masses that are too small. This effectively
restricts the search for compact objects using diffractive lensing of FRBs to the mass range
between ⇠ 10�4 M� and ⇠ 0.1 M�.

The above discussion applies also to the case of a scintillation screen placed between
the source and the lens, see fig. 6. This setup describes scintillation in the ISM of the FRB
host galaxy or in the IGM between the lens and the host. The amplitude of the observed
signal is again given by eq. (3.9), with the screen–observer distance DScO replaced by the
screen–source distance DScS. The rest of the analysis proceeds without changes. Notice that
strong scintillation effectively spreads the source into a patch of radius rref on the scintillation
screen. The condition ! ✓E rref < 1 for coherent distortion of the lensed images can then be
reinterpreted as the restriction (2.10) on the size of the source required for diffractive lensing.
One may wonder then why one can discern the lensing pattern in the regime (b) even if this
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Simulating lensing+scintillation



Scintillation outside MW

}

DScS

• in the host galaxy: symmetric, the same analysis as for MW

• in the intergalactic medium: unimportant for realistic assumtions, 
unless the line-of-sight crosses a galaxy or a cluster



Analysis of simulated data
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Figure 8. The analysis of a single, diffractively lensed FRB spectrum following the steps described
in the text. The upper left plot shows the radiation power spectrum, and the lower left plot shows
the Fourier transform thereof, where the lensing peak is clearly visible at the expected time delay
(vertical black line). However, we also see one spurious peak. Similarly, the middle column shows
the reconstructed transfer function and its Fourier transform, and the column on the right shows the
same after the averaging procedure described in the text. We have assumed a source at a comoving
distance DS = 1 Gpc and a lens at DL = 0.5 Gpc, y = 0.5. (JK: larger font for tick labels

and axis labels. include also the notation from the text in the axis labels, e.g. “power

spectrum I
obs

(⌫)”.)

to lensing on top of the stochastic background from scintillation. We would like to work in
particular with the Fourier transform |T (⌧)| ⌘ �� FFT

�|T (⌫)|2��� (JK: better notation?) of
the transfer function, eq. (3.21), where the lensing signal materializes as a peak at ⌧ = �t.
Of course, we do not have direct access to the transfer function and its Fourier transform
as we do not know the initial spectrum at the source. Moreover, observing the lensing peak
is complicated by the fact that it is typically located on top of a steeply falling (or rising)
background.

The first step in our analysis chain is a fit of the logarithm of the “observed” radiation
intensity, log Iobs(⌫) ⌘ log |fobs(⌫)|2 with a high-order polynomial (we use d = 15). To ensure
the fit is smooth, we use polynomial Lasso regression with regularization parameter 0.05 [69,
70]. We then subtract the fit function from log Iobs(⌫) to obtain an estimate log |T̂ (⌫)|2 of
the log of the transfer function |T (⌫)|2, eq. (3.21). Besides Lasso regression with a 15th
order polynomial, we tried several alternative fitting functions and regularization methods
(for instance ridge regression). We found them to all perform roughly comparably. The
subtle effects that various fitting strategies might induce on the reconstructed spectrum, can
be studied by the reader independently using our public code [43].

At the second stage of our analysis, we look for peaks in the Fourier transform (or rather
the modulus squared thereof) of |T̂ (⌫)|2. For a fixed peak frequency ⌫0 and peak width w⌫ ,
we fit a polynomial P (⌫0, w⌫ ; ⌫) to the Fourier power spectrum (JK: in linear space or log
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Idea: Apply peak-finder algorithm to the FFT of the power spectrum
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the Fourier transform thereof, where the lensing peak is clearly visible at the expected time delay
(vertical black line). However, we also see one spurious peak. Similarly, the middle column shows
the reconstructed transfer function and its Fourier transform, and the column on the right shows the
same after the averaging procedure described in the text. We have assumed a source at a comoving
distance DS = 1 Gpc and a lens at DL = 0.5 Gpc, y = 0.5. (JK: larger font for tick labels
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to lensing on top of the stochastic background from scintillation. We would like to work in
particular with the Fourier transform |T (⌧)| ⌘ �� FFT

�|T (⌫)|2��� (JK: better notation?) of
the transfer function, eq. (3.21), where the lensing signal materializes as a peak at ⌧ = �t.
Of course, we do not have direct access to the transfer function and its Fourier transform
as we do not know the initial spectrum at the source. Moreover, observing the lensing peak
is complicated by the fact that it is typically located on top of a steeply falling (or rising)
background.

The first step in our analysis chain is a fit of the logarithm of the “observed” radiation
intensity, log Iobs(⌫) ⌘ log |fobs(⌫)|2 with a high-order polynomial (we use d = 15). To ensure
the fit is smooth, we use polynomial Lasso regression with regularization parameter 0.05 [69,
70]. We then subtract the fit function from log Iobs(⌫) to obtain an estimate log |T̂ (⌫)|2 of
the log of the transfer function |T (⌫)|2, eq. (3.21). Besides Lasso regression with a 15th
order polynomial, we tried several alternative fitting functions and regularization methods
(for instance ridge regression). We found them to all perform roughly comparably. The
subtle effects that various fitting strategies might induce on the reconstructed spectrum, can
be studied by the reader independently using our public code [43].

At the second stage of our analysis, we look for peaks in the Fourier transform (or rather
the modulus squared thereof) of |T̂ (⌫)|2. For a fixed peak frequency ⌫0 and peak width w⌫ ,
we fit a polynomial P (⌫0, w⌫ ; ⌫) to the Fourier power spectrum (JK: in linear space or log
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Figure 11. Expected limits on primordial black holes and other compact DM objects from an SKA
search for nanolensed FRBs. We compare our projections (in blue) to microlensing constraints from
Subaru HSC [15], epler [73], MACHO [12], EROS [14]m and OGLE [13] (see, however, the reservations
of [74] about the HSC bound), to CMB constraints due to accretion onto PBHs [11], to limits based
on the dynamics of ultra-faint dwarf galaxies [75], and to bounds on the contribution of Hawking
radiation from PBHs to the extragalactic photon background (EG�) [9]. We emphasize that all
present limits except the CMB and EG� ones are based on the local distribution of DM in the Milky
Way and its immediate neighborhood. This means for instance that they cannot be extended to
DM miniclusters (JK: citation), which might suffer from tidal disruption in the Milky Way. FRB
nanolensing constraints will not suffer from this shortcoming. (JK: show and comment on other

constraints/future limits)

⇢PBH for fixed M by solving the equation

�2 log

 
NY

i=1

Li
FRB(M, ⇢PBH , ziS)

Li
FRB(0, 0, ziS)

!
= 5.99 , (4.11)

(JK: Use 1 dof or 2 dof here?) For simplicity, we will in the following assume that all
sources are at the same redshift, and that also the properties of the interjacent scintillation
screens are the same. When the likelihood for lensing a single FRB is small (LFRB(M, ⇢PBH , ziS) ⌧
LFRB(0, 0, ziS)), the reach for the PBH density ⇢PBH is then inversely proportional to the
number of sources N . This is because increasing the number of sources linearly decreases the
effective optical depth, i.e. the distance from the observer at which a PBH will be encountered
along any of the lines of sight.

The resulting bound on the PBH parameter space is shown in fig. 11 and compared
to other constraints on primordial black holes and other compact DM object. We see that,
for a realistic number of FRB observations in the SKA era (JK: comment somewhere
on the number of FRB per day in SKA), our method can be expected to yield highly
competitive constraints. Even more importantly, the expected limits are highly complemen-
tary to those from microlensing searches because FRBs probe the distribution of DM over
cosmological distance scales, while microlensing is sensitive to DM in the Milky Way and its
immediate vicinity. This makes FRB nanolensing a particularly interesting probe for DM
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